1
|
Reglero-Real N, Rolas L, Nourshargh S. Aging microvasculature: Effects on immune cell trafficking and inflammatory diseases. J Exp Med 2025; 222:e20242154. [PMID: 40455014 PMCID: PMC12128883 DOI: 10.1084/jem.20242154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/07/2025] [Accepted: 05/14/2025] [Indexed: 06/11/2025] Open
Abstract
Leukocyte recruitment to sites of inflammation is vital for orchestrating an effective immune response. Key to this process is the ability of leukocytes to migrate through venular walls, engaging in sequential interactions with endothelial cells, pericytes, and the venular basement membrane. The aging process exerts profound effects on the molecular and functional properties of the vasculature, thereby influencing the profile and dynamics of leukocyte trafficking during inflammation. In this review, by focusing mainly on neutrophils, we summarize key examples of how the aged microvasculature and perivascular stroma cells promote dysregulated leukocyte-venular wall interactions and present the associated molecular mechanisms. Additionally, we discuss the functional implications of such aberrant leukocyte behavior to age-related and chronic inflammatory pathologies.
Collapse
Affiliation(s)
- Natalia Reglero-Real
- Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM) and Centro de Biología Molecular Severo Ochoa (CBM), Universidad Autónoma de Madrid, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Qiu X, Zhao F, He D, He G, Li X, Liu R, Yuan J, Wang Y. BQU57 suppresses IL-1β-induced apoptosis and extracellular matrix degradation in nucleus pulposus cells by blocking the NF-κB signaling pathway. Cell Signal 2025; 131:111729. [PMID: 40064280 DOI: 10.1016/j.cellsig.2025.111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 03/06/2025] [Indexed: 03/21/2025]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a significant contributor to lower back pain (LBP), affecting approximately 80 % of the global population. The RalA inhibitor BQU57 plays a role in various cellular functions; however, its impact on nucleus pulposus cell (NPC) degeneration remains unclear. METHODS This study employed a combination of bioinformatics analysis and experimental validation to investigate the role of RalA in IVDD and its inhibitor BQU57 in its therapeutic potential. Gene expression datasets from the GEO database were analyzed to identify genes associated with IVDD, and clinical intervertebral disc samples were collected to validate the upregulation of RalA in degenerated discs. In vivo and in vitro assessments were conducted to evaluate the effects of BQU57 on the extracellular matrix (ECM) metabolism and apoptosis of nucleus pulposus (NP) cells. RESULTS Elevated expression of RalA was observed in degenerated intervertebral discs from IVDD patients, and its expression was correlated with disease severity. Further mechanistic studies revealed that the RalA inhibitor BQU57 could balance ECM metabolism and apoptosis, potentially through the activation of the NF-κB signaling pathway. CONCLUSION RalA plays a significant role in the pathogenesis of IVDD, and it may serve as a novel therapeutic target for IVDD. BQU57 demonstrates potential as an effective small molecule drug for the prevention and treatment of IVDD.
Collapse
Affiliation(s)
- Xiaoting Qiu
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Feiyu Zhao
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Dongqin He
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Guanghui He
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoke Li
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ruxing Liu
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jie Yuan
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Yongfeng Wang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
3
|
Lavarti R, Alvarez-Diaz T, Marti K, Kar P, Raju RP. The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging. Ageing Res Rev 2025; 109:102760. [PMID: 40318767 PMCID: PMC12145239 DOI: 10.1016/j.arr.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Aging is characterized by a steady loss of physiological integrity, leading to impaired function and increased vulnerability to death. Cell senescence is a biological process that progresses with aging and is believed to be a key driver of age-related diseases. Senescence, a hallmark of aging, also demonstrates its beneficial physiological aspects as an anti-cancer, pro-regenerative, homeostatic, and developmental mechanism. A transitory response in which the senescent cells are quickly formed and cleared may promote tissue regeneration and organismal fitness. At the same time, senescence-related secretory phenotypes associated with extended senescence can have devastating effects. The fact that the interaction between senescent cells and their surroundings is very context-dependent may also help to explain this seemingly opposing pleiotropic function. Further, mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. This review summarizes the mechanism of cellular senescence and the significance of acute senescence. We concisely introduced the context-dependent role of senescent cells and SASP, aspects of mitochondrial biology altered in the senescent cells, and their impact on the senescent phenotype. Finally, we conclude with recent therapeutic advancements targeting cellular senescence, focusing on acute injuries and age-associated diseases. Collectively, these insights provide a future roadmap for the role of senescence in organismal fitness and life span extension.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tatiana Alvarez-Diaz
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kyarangelie Marti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Parmita Kar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
4
|
Xie J, Shu X, Xie Z, Tang J, Wang G. Pharmacological modulation of cellular senescence: Implications for breast cancer progression and therapeutic strategies. Eur J Pharmacol 2025; 997:177475. [PMID: 40049574 DOI: 10.1016/j.ejphar.2025.177475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 05/02/2025]
Abstract
Senescence, defined by the cessation of cell proliferation, plays a critical and multifaceted role in breast cancer progression and treatment. Senescent cells produce senescence-associated secretory phenotypes (SASP) comprising inflammatory cytokines, chemokines, and small molecules, which actively shape the tumor microenvironment, influencing cancer development, progression, and metastasis. This review provides a comprehensive analysis of the types and origins of senescent cells in breast cancer, alongside their markers and detection methods. Special focus is placed on pharmacological strategies targeting senescence, including drugs that induce or inhibit senescence, their molecular mechanisms, and their roles in therapeutic outcomes when combined with chemotherapy and radiotherapy. By exploring these pharmacological interventions and their impact on breast cancer treatment, this review underscores the potential of senescence-targeting therapies to revolutionize breast cancer management.
Collapse
Affiliation(s)
- Jialing Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - Xianlong Shu
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - Zilan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
| |
Collapse
|
5
|
Zhou S, Peng L, Wang Y, Cheng D, Li Z, Xiong H, Wang T, Liu Y, Jia Z, Sun W, Ni C. Bazibushen attenuates fibroblast senescence in silica-induced pulmonary fibrosis via FOXO1/PINK1/Parkin Axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156714. [PMID: 40215811 DOI: 10.1016/j.phymed.2025.156714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
Silicosis, an age-related disease, is still a heavy burden on global occupational health. Emerging evidence has revealed that targeting senescent cells may be a promising therapeutic strategy for silicosis. This study was designed to investigate the novel function of Bazibushen (BZBS), a known anti-aging drug, in improving silica-induced lung fibrosis. We first confirmed the accumulation of senescent fibroblasts in the fibrotic regions of silicotic lungs. In both young (6-8 weeks) and aged (12 months) silicotic mice, BZBS exhibited anti-fibrosis and anti-senescence effects. Results of in vitro experiments showed the ability of BZBS to block the expression of p21, fibrotic markers, and senescence-associated secretory phenotype factors. Furthermore, BZBS was observed to attenuate mitochondrial dysfunction in senescent fibroblasts through FOXO1/PINK1/Parkin signaling. Collectively, these results indicated BZBS as a potential anti-fibrosis agent, which exerted its role through maintaining mitochondrial homeostasis in senescent fibroblasts.
Collapse
Affiliation(s)
- Siyun Zhou
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Lan Peng
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yue Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Demin Cheng
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Ziwei Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Haojie Xiong
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Ting Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yi Liu
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Zhenhua Jia
- Hebei Yiling Hospital, High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Shijiazhuang, 050091, Hebei, China; National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, Hebei, China.
| | - Wenqing Sun
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing medical university, Wuxi, China.
| | - Chunhui Ni
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Conti A, Di Micco R. A novel platform for precise senolysis. Mech Ageing Dev 2025; 225:112056. [PMID: 40199385 DOI: 10.1016/j.mad.2025.112056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Abstract
The selective eradication of senescent cells using senolytic compounds represents a promising strategy to treat senescence-associated diseases like aging and cancer. However, many senolytics may cause systemic toxicity. Magkouta et al., writing in Nature Aging, introduced mGL392, an advanced senolytic platform utilizing a lipofuscin-binding domain scaffold conjugated with a senolytic drug (e.g., dasatinib). mGL392 effectively eliminates senescent cells in vitro and in vivo, reducing tumor size in melanoma models while minimizing systemic toxicity. Compared to existing senolytics, it offers improved specificity, reducing off-target effects. This innovation presents a safer and more effective approach for treating senescence-related diseases.
Collapse
Affiliation(s)
- Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; University School of Advanced Studies IUSS, Pavia 27100, Italy.
| |
Collapse
|
7
|
Giovarelli M, Mocciaro E, Carnovale C, Cervia D, Perrotta C, Clementi E. Immunosenescence in skeletal muscle: The role-play in cancer cachexia chessboard. Semin Cancer Biol 2025; 111:48-59. [PMID: 40020976 DOI: 10.1016/j.semcancer.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
With the increase in life expectancy, age-related conditions and diseases have become a widespread and relevant social burden. Among these, immunosenescence and cancer cachexia play a significant often intertwined role. Immunosenescence is the progressive aging decline of both the innate and adaptive immune systems leading to increased infection susceptibility, poor vaccination efficacy, autoimmune disease, and malignancies. Cancer cachexia affects elderly patients with cancer causing severe weight loss, muscle wasting, inflammation, and reduced response to therapies. Whereas the connections between immunosenescence and cancer cachexia have been raising attention, the molecular mechanisms still need to be completely elucidated. This review aims at providing the current knowledge about the interplay between immunosenescence, skeletal muscle, and cancer cachexia, analyzing the molecular pathways known so far to be involved. Finally, we highlight potential therapeutic strategies suited for elderly population aimed to block immunosenescence and to preserve muscle mass in cachexia, also presenting the analysis of the current state-of-the-art of related clinical trials.
Collapse
Affiliation(s)
- Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy.
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo 01100, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy.
| |
Collapse
|
8
|
Gan X, Li J, Jiang Y, Wang X, Zeng Y, Chen X, Huang H, Min J, Li G, Nie M, Kang H. Vaccarin ameliorates osteoarthritis by suppressing the c-Jun N-terminal kinase (JNK)-serum amyloid A2 (SAA2) pathway mediating chondrocyte senescence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156697. [PMID: 40215820 DOI: 10.1016/j.phymed.2025.156697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Osteoarthritis is a chronic degenerative joint disease marked by chondrocyte senescence and extracellular matrix degradation. Vaccarin, a flavonoid with anti-inflammatory and antioxidant properties, has not been previously investigated for its therapeutic potential in osteoarthritis. PURPOSE To evaluate the therapeutic potential of Vaccarin in osteoarthritis and elucidate its underlying mechanisms. DESIGN AND METHOD This study utilized in vitro chondrocyte cultures and RNA sequencing to identify relevant pathways, followed by validation at the genetic, protein, and metabolic levels using multiple approaches. Additionally, the therapeutic effects of Vaccarin were assessed in vivo using a destabilization of the medial meniscus (DMM)-induced osteoarthritis mouse model and human cartilage samples from osteoarthritis patients. RESULTS Vaccarin effectively ameliorated osteoarthritis both in vivo and in vitro. Transcriptomic sequencing indicated a significant downregulation of serum amyloid A2 (SAA2) expression following Vaccarin treatment. Multi-omics analysis, validated by human specimens, indicated that SAA2 is minimally secreted in healthy articular cartilage but serves as a crucial osteoarthritis biomarker in Asian populations. Mechanistically, Vaccarin inhibits c-Jun N-terminal kinase (JNK) phosphorylation, thereby reducing SAA2 expression and mitigating chondrocyte inflammation and senescence. Notably, inflammatory conditions upregulate SAA2 expression in chondrocytes via the JNK pathway. Elevated SAA2 levels contribute to mitochondrial dysfunction in chondrocytes, leading to increased reactive oxygen species (ROS) production and exacerbating osteoarthritis progression. CONCLUSION This study identifies SAA2 as a potential therapeutic target for osteoarthritis and suggests that Vaccarin presents a promising treatment avenue.
Collapse
Affiliation(s)
- Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jianwen Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yongqiao Jiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yunqian Zeng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Juan Min
- Institutional Center for Shared Technologies and Facilities of Wuhan, Institute of Virology, Chinese Academy of Sciences, Wuhan 430010, PR China
| | - Guanghao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Mingbo Nie
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
9
|
Demaria M. Rethinking healthcare through aging biology. Aging (Albany NY) 2025; 17:206262. [PMID: 40448665 DOI: 10.18632/aging.206262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2025] [Accepted: 05/27/2025] [Indexed: 06/02/2025]
Affiliation(s)
- Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Netherlands
| |
Collapse
|
10
|
Picos A, Seoane N, Campos-Toimil M, Viña D. Vascular senescence and aging: mechanisms, clinical implications, and therapeutic prospects. Biogerontology 2025; 26:118. [PMID: 40418230 DOI: 10.1007/s10522-025-10256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
The aging vasculature is characterized by endothelial dysfunction, arterial stiffness, and increased susceptibility to vascular pathologies. Central to these changes is the process of cellular senescence, where endothelial and vascular smooth muscle cells lose their replicative and functional capacity and adopt a pro-inflammatory secretory phenotype. This review provides an overview of the key mechanisms underlying vascular senescence, including the p53/p21 and p16/Rb pathways, the senescence-associated secretory phenotype (SASP), and oxidative stress, examines its contribution to cardiovascular diseases in older adults, and highlights emerging therapeutic strategies aimed at delaying or reversing these age-related vascular changes. In vascular cells, DNA damage, oxidative stress, and chronic inflammation associated with aging converge to amplify senescence. Clinically, vascular senescence is linked with hypertension, atherosclerosis, and increased overall cardiovascular risk. Several interventions, ranging from senolytics to lifestyle factors, show promise in mitigating these changes; however, long-term studies are needed. Given that vascular senescence is a pivotal driver of cardiovascular pathology in aging, targeting senescent cells or their secretory phenotype may potentially offer new avenues for preventing or attenuating age-related vascular diseases. This review presents an updated and integrative overview of vascular senescence, connecting fundamental cellular mechanisms with their clinical manifestations and highlighting the most promising therapeutic interventions.
Collapse
Affiliation(s)
- Aitor Picos
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Translational Research in Neurological Diseases (ITEN), Health Research Institute of Santiago de Compostela (IDIS), USC University Hospital Complex (CHUS), SERGAS, Santiago de Compostela, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Nuria Seoane
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Translational Research in Neurological Diseases (ITEN), Health Research Institute of Santiago de Compostela (IDIS), USC University Hospital Complex (CHUS), SERGAS, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Translational Research in Neurological Diseases (ITEN), Health Research Institute of Santiago de Compostela (IDIS), USC University Hospital Complex (CHUS), SERGAS, Santiago de Compostela, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Dolores Viña
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Translational Research in Neurological Diseases (ITEN), Health Research Institute of Santiago de Compostela (IDIS), USC University Hospital Complex (CHUS), SERGAS, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
11
|
Feng Y, Zhu Z, Zhao S, Jiang X, Zhang W, Xu Z. Bioorthogonally Activatable Photosensitizer for NIR Fluorescence Imaging-Guided Highly Selective Elimination of Senescent Tumor Cells and Chemotherapy Enhancement. Bioconjug Chem 2025; 36:1066-1078. [PMID: 40329576 DOI: 10.1021/acs.bioconjchem.5c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Chemotherapy is a primary modality in cancer treatment, but it may induce cellular senescence, which in turn triggers the release of senescence-associated secretory phenotypes (SASPs) that promote tumor growth and metastasis. To selectively identify senescent cells and mitigate their negative impact on cancer therapy, herein, we have developed a β-galactosidase (β-Gal)-activated and self-immobilizing photosensitizer CyGF-DBCO-T. This photosensitizer can be selectively activated and fluorescently label proteins in situ within senescent cells, enabling near-infrared (NIR) fluorescence imaging-guided photodynamic therapy (PDT) for the precise ablation of these cells. First, we developed an activatable NIR fluorescent probe CyGF-N3 that can specifically in situ label senescent cells. Subsequently, DBCO-T with free radicals underwent a bioorthogonal click reaction with activated CyGF-N3 in senescent cells to generate the photosensitizer CyO-DBCO-T. Under light irradiation, CyO-DBCO-T generated singlet oxygen (1O2) in situ, thereby enabling precise PDT with fluorescence guidance and photoactivation. Both CyGF-N3 and DBCO-T were encapsulated in biotinylated liposomes (CyGF-N3@LIP-B and DBCO-T@LIP-B), which enhanced their water solubility, tumor targeting, and in vivo circulation time. This promoted the accumulation of the probes in senescent tumor cells, thus enabling intense fluorescence imaging of tumor senescence regions in mice and enhancing the efficacy of PDT. This dual-module strategy, guided by fluorescence imaging for PDT, has achieved selective identification and precise ablation of senescent tumor cells in a chemotherapy-induced senescence model, effectively alleviating chemotherapy resistance and suppressing tumor growth.
Collapse
Affiliation(s)
- Yun Feng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zifan Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shirui Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xingyu Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
12
|
Ryan P, Lee J. In vitro senescence and senolytic functional assays. Biomater Sci 2025. [PMID: 40375674 DOI: 10.1039/d4bm01684j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
A detailed understanding of aging biology and the development of anti-aging therapeutic strategies remain imperative yet inherently challenging due to the protracted nature of aging. Cellular senescence arises naturally through replicative exhaustion and is accelerated by clinical treatments or environmental stressors. The accumulation of senescent cells-defined by a loss of mitogenic potential, resistance to apoptosis, and acquisition of a pro-inflammatory secretory phenotype-has been implicated as a key driver of chronic disease, tissue degeneration, and organismal aging. Recent studies have highlighted the therapeutic promise of senolytic drugs, which selectively eliminate senescent cells. Compelling results from preclinical animal studies and ongoing clinical trials underscore this potential. However, the clinical translation of senolytics requires further pharmacological validation to refine selectivity, minimize toxicity, and determine optimal dosing. Equally important is the evaluation of senolytics' potential to restore tissue structure and function by reducing the senescent cell burden. In vitro tissue culture models offer a powerful platform to advance these efforts. This review summarizes the current landscape of in vitro systems used for inducing cellular senescence-referred to as "senescence assays"-and for screening senolytic drugs-referred to as "senolytic assays". We conclude by discussing key challenges to improving mechanistic insight, predictive accuracy, and clinical relevance in senolytic drug development, as well as emerging applications of senolytic therapies.
Collapse
Affiliation(s)
- Patrick Ryan
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
| | - Jungwoo Lee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
13
|
Gluck L, Gerstein B, Kaunzner UW. Repair mechanisms of the central nervous system: From axon sprouting to remyelination. Neurotherapeutics 2025:e00583. [PMID: 40348704 DOI: 10.1016/j.neurot.2025.e00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
The central nervous system (CNS), comprising the brain, spinal cord, and optic nerve, has limited regenerative capacity, posing significant challenges in treating neurological disorders. Recent advances in neuroscience and neurotherapeutics have introduced promising strategies to stimulate CNS repair, particularly in the context of neurodegenerative diseases such as multiple sclerosis. This review explores the complex interplay between inflammation, demyelination, and remyelination possibilities. Glial cells, including oligodendrocyte precursors, oligodendrocytes, astrocytes and microglia play dual roles in injury response, with reactive gliosis promoting repair but also potentially inhibiting recovery through glial scar formation. There is also an emphasis on axonal regeneration, axonal sprouting and stem cell therapies. We highlight the role of neuroplasticity in recovery post-injury and the limited regenerative potential of axons in the CNS due to inhibitory factors such as myelin-associated inhibitors. Moreover, neurotrophic factors support neuronal survival and axonal growth, while stem cell-based approaches offer promise for replacing lost neurons and glial cells. However, challenges such as stem cell survival, integration, and risk of tumor formation remain. Furthermore, we examine the role of neurogenesis in CNS repair and the remodeling of the extracellular matrix, which can facilitate regeneration. Through these diverse mechanisms, ongoing research aims to overcome the intrinsic and extrinsic barriers to CNS repair and advance therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Lauren Gluck
- Montefiore Medical Center, 1250 Waters Place Tower 2, Bronx, NY 10461, USA.
| | - Brittany Gerstein
- Weill-Cornell-Medicine, Department of Neurology, 1305 York Avenue, New York City, 10021, USA.
| | - Ulrike W Kaunzner
- Weill-Cornell-Medicine, Department of Neurology, 1305 York Avenue, New York City, 10021, USA.
| |
Collapse
|
14
|
Donovan LJ, Brewer CL, Bond SF, Laslavic AM, Pena Lopez A, Colman L, Jordan CE, Hansen LH, González OC, Pujari A, de Lecea L, Quarta M, Kauer JA, Tawfik VL. Aging and injury drive neuronal senescence in the dorsal root ganglia. Nat Neurosci 2025; 28:985-997. [PMID: 40369367 PMCID: PMC12081305 DOI: 10.1038/s41593-025-01954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/21/2025] [Indexed: 05/16/2025]
Abstract
Aging negatively impacts central nervous system function; however, there is limited information about the cellular impact of aging on peripheral nervous system function. Importantly, injury to vulnerable peripheral axons of dorsal root ganglion (DRG) neurons results in somatosensory dysfunction, such as pain, at higher rates in aged individuals. Cellular senescence is common to both aging and injury and contributes to the aged pro-inflammatory environment. We discovered DRG neuron senescence in the context of aging and pain-inducing peripheral nerve injury in young (~3 months) and aged (~24 months) male and female mice. Senescent neurons were dynamic and heterogeneous in their expression of multiple senescence markers, including pro-inflammatory factor IL6. Senescence marker-expressing neurons had nociceptor-like profiles, included high-firing phenotypes and displayed increased excitability after IL6 application. Furthermore, elimination of senescent cells resulted in improvement of nociceptive behaviors in nerve-injured mice. Finally, male and female post-mortem human DRG contained senescent neurons that increased with age (~32 years old versus 65 years old). Overall, we describe a susceptibility of the peripheral nervous system to neuronal senescence-a potential targetable mechanism to treat sensory dysfunction, such as chronic pain, particularly in aged populations.
Collapse
Affiliation(s)
- Lauren J Donovan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA.
| | - Chelsie L Brewer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sabrina F Bond
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | | | - Aleishai Pena Lopez
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Laura Colman
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Claire E Jordan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Linus H Hansen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Oscar C González
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Julie A Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Kawabata S, Iijima H, Kanemura N, Murata K. Genome-Wide Network Analysis of DRG-Sciatic Nerve Network-Inferred Cellular Senescence and Senescence Phenotype in Peripheral Sensory Neurons. Mol Neurobiol 2025; 62:6112-6127. [PMID: 39714525 DOI: 10.1007/s12035-024-04666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Accumulation of senescent neurons in the dorsal root ganglion (DRG) is an important tissue phenotype that causes age-related degeneration of peripheral sensory nerves. Senescent neurons are neurons with arrested cell cycle that have undergone cellular senescence but remain in the tissue and play various biological roles. To understand the accumulation of senescent neurons in the DRG during aging, we aimed to elucidate the mechanism that induces cellular senescence in DRG neurons and the role of senescent DRG neurons. We integrated multiple public transcriptome datasets for DRGs, which include cell bodies in neurons, and the sciatic nerve, which includes axons in neurons, using network medicine-based bioinformatics analysis. We thus inferred the molecular mechanisms involved in cellular senescence of DRG neurons, from molecular responses to senescence, in the DRG-sciatic nerve network. Network medicine-based bioinformatics analysis revealed that age-related Mapk3 decline leads to impaired cholesterol metabolism and biosynthetic function in axons, resulting in compensatory upregulation of Srebf1, a transcription factor involved in lipid and cholesterol metabolism. This in turn leads to CDKN2A-mediated cellular senescence. Furthermore, our analysis revealed that senescent DRG neurons develop a senescence phenotype characterized by activation of antigen-presenting cells via upregulation of Ctss as a hub gene. B cells were inferred as antigen-presenting cells activated by Ctss, and CD8-positive T cells were inferred as cells that receive antigen presentation from B cells.
Collapse
Affiliation(s)
- Sora Kawabata
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hirotaka Iijima
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Naohiko Kanemura
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, 820 San-Nomiya, Koshigaya-Shi, Saitama, 343-8540, Japan
| | - Kenji Murata
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, 820 San-Nomiya, Koshigaya-Shi, Saitama, 343-8540, Japan.
| |
Collapse
|
16
|
Tanaka S, Mifune Y, Inui A, Yamaura K, Furukawa T, Kato T, Kusunose M, Matsumoto T, Matsushita T, Kuroda R. Mitochondrial Dysfunction of the Subsynovial Connective Tissue in Patients With Carpal Tunnel Syndrome. J Orthop Res 2025; 43:1045-1053. [PMID: 40099548 DOI: 10.1002/jor.26064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025]
Abstract
In idiopathic carpal tunnel syndrome (CTS), fibrosis and thickening of the subsynovial connective tissue (SSCT) increase pressure within the carpal tunnel, resulting in median nerve entrapment. Mitochondrial dysfunction in tissues reportedly leads to senescent cell accumulation and various diseases through reduced adenosine triphosphate (ATP) and excessive reactive oxygen species (ROS) production; however, no reports have linked this to CTS. Therefore, this study aimed to evaluate mitochondrial function in SSCTs of patients with CTS. This study investigated SSCTs obtained during carpal tunnel release surgery in patients with CTS (CTS group) and those obtained during tendon transfer or tendon rupture surgery in patients without CTS (control group) from April 2021 to March 2023 at our hospital. Outcome measures included superoxide dismutase (SOD) activity, gene expression levels, immunofluorescence staining, ATP production assays, and transmission electron microscopy (TEM). p values were calculated using the Mann-Whitney U test. The CTS and control groups included 10 and 5 patients (mean age, 67.8 ± 9.57 and 65.4 ± 9.75 years), respectively. The CTS group exhibited decreased SOD activity (p = 0.026), increased gene expression of mitochondrial biosynthetic factors, and decreased mitochondrial ATP production (p = 0.027). The CTS group showed increased mitochondrial ROS production (p = 0.038) on immunofluorescence and larger mitochondrial area (p = 0.030) and fewer mitochondrial cristae (p = 0.045) on TEM. Multiple mitochondrial function assays suggested mitochondrial dysfunction of SSCTs in the CTS group. STATEMENT OF CLINICAL SIGNIFICANCE: This research provided important information on the histological changes in the subsynovial connective tissue within the carpal tunnel in carpal tunnel syndrome.
Collapse
Affiliation(s)
- Shuya Tanaka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Takahiro Furukawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Tatsuo Kato
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Masaya Kusunose
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| |
Collapse
|
17
|
Abraham S, Parekh J, Lee S, Afrin H, Rozenblit M, Blenman KRM, Perry RJ, Ferrucci LM, Liu J, Irwin ML, Lustberg M. Accelerated Aging in Cancer and Cancer Treatment: Current Status of Biomarkers. Cancer Med 2025; 14:e70929. [PMID: 40322791 PMCID: PMC12051034 DOI: 10.1002/cam4.70929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/20/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Aging in humans is a heterogeneous process influenced by both biological and chronological factors. Biological age reflects an individual's physiological reserve and functional status. Increasing evidence suggests that cancer and its therapies accelerate biological aging. Many biomarkers have been evaluated to assess the biological age of patients with cancer. These biomarkers are emerging as potential tools to predict cancer-related toxicity and an individual's functional capacity as well as to individualize treatment. METHODS This review summarizes the current literature on aging biomarkers in cancer patients, with a focus on markers of cellular senescence and epigenetic modification. We evaluate the existing evidence supporting their use as predictors of toxicity in patients undergoing chemotherapy and radiation therapy. RESULTS Biomarkers such as interleukin-6 (IL-6), leukocyte telomere length (LTL), and DNA methylation age show potential for assessing biological age, frailty, and functional reserve. The expression of p16INK4A has demonstrated promise in predicting therapy-induced toxicity and making treating decisions. However, additional confirmatory studies are necessary to further validate these biomarkers before they can be utilized as decision aids. CONCLUSION Aging biomarkers hold promise for individualizing cancer therapy and predicting treatment-related toxicity. However, further studies are essential to validate their reliability and support their integration into clinical practice.
Collapse
Affiliation(s)
- Soniya Abraham
- Department of Internal MedicineYale‐New Haven Health Bridgeport HospitalBridgeportConnecticutUSA
| | - Jay Parekh
- Department of Internal MedicineYale‐New Haven Health Bridgeport HospitalBridgeportConnecticutUSA
| | - Seohyuk Lee
- Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Humayra Afrin
- Division of Medical Oncology, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Mariya Rozenblit
- Division of Medical Oncology, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Kim R. M. Blenman
- Division of Medical Oncology, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Rachel J. Perry
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenConnecticutUSA
| | - Leah M. Ferrucci
- Yale School of Public HealthYale Cancer CenterNew HavenConnecticutUSA
| | - Jessica Liu
- Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Melinda L. Irwin
- Yale School of Public HealthYale Cancer CenterNew HavenConnecticutUSA
| | - Maryam Lustberg
- Division of Medical Oncology, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
18
|
Bajtai E, Kiss C, Bakos É, Langó T, Lovrics A, Schád É, Tisza V, Hegedűs K, Fürjes P, Szabó Z, Tusnády GE, Szakács G, Tantos Á, Spisák S, Tóvári J, Füredi A. Therapy-induced senescence is a transient drug resistance mechanism in breast cancer. Mol Cancer 2025; 24:128. [PMID: 40312750 PMCID: PMC12044945 DOI: 10.1186/s12943-025-02310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/23/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Therapy-induced senescence (TIS) is considered a permanent cell cycle arrest following DNA-damaging treatments; however, its irreversibility has recently been challenged. Here, we demonstrate that escape from TIS is universal across breast cancer cells. Moreover, TIS provides a reversible drug resistance mechanism that ensures the survival of the population, and could contribute to relapse. METHODS TIS was induced in four different breast cancer cell line with high-dose chemotherapy and cultured until cells escaped TIS. Parental, TIS and repopulating cells were analyzed by bulk and single-cell RNA sequencing and surface proteomics. A genetically engineered mouse model of triple-negative breast cancer was used to prove why current senolytics cannot overcome TIS in tumors. RESULTS Screening the toxicity of a diverse panel of FDA-approved anticancer drugs revealed that TIS meditates resistance to half of these compounds, despite their distinct mechanism of action. Bulk and single-cell RNA sequencing, along with surface proteome analysis, showed that while parental and repopulating cells are almost identical, TIS cells are significantly different from both, highlighting their transient nature. Furthermore, investigating dozens of known drug resistance mechanisms offered no explanation for this unique drug resistance pattern. Additionally, TIS cells expressed a gene set associated with immune evasion and a potential KRAS-driven escape mechanism from TIS. CONCLUSION Our results reveal that TIS, as a transient drug resistance mechanism, could contribute to overcome the immune response and to relapse by reverting to a proliferative stage.
Collapse
Affiliation(s)
- Eszter Bajtai
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Semmelweis University Doctoral School, Budapest, 1085, Hungary
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
- National Laboratory for Drug Research and Development, Budapest, 1117, Hungary
| | - Csaba Kiss
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Éva Bakos
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Tamás Langó
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Anna Lovrics
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Éva Schád
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Viktória Tisza
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Károly Hegedűs
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Semmelweis University Doctoral School, Budapest, 1085, Hungary
| | - Péter Fürjes
- Institute of Technical Physics and Materials Science, HUN-REN Centre of Energy Research, Budapest, 1121, Hungary
| | - Zoltán Szabó
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6725, Hungary
| | - Gábor E Tusnády
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Bioinformatics, Semmelweis University, Budapest, 1085, Hungary
| | - Gergely Szakács
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Center for Cancer Research, Medical University of Vienna, Vienna, 1090, Austria
| | - Ágnes Tantos
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Sándor Spisák
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| | - József Tóvári
- Semmelweis University Doctoral School, Budapest, 1085, Hungary.
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary.
| | - András Füredi
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
- Semmelweis University Doctoral School, Budapest, 1085, Hungary.
- National Laboratory for Drug Research and Development, Budapest, 1117, Hungary.
- Institute of Technical Physics and Materials Science, HUN-REN Centre of Energy Research, Budapest, 1121, Hungary.
- Physiological Controls Research Center, University Research and Innovation Center, Obuda University, Budapest, 1034, Hungary.
| |
Collapse
|
19
|
Ding F, Yu Y, Zhao J, Wei S, Zhang Y, Han JH, Li Z, Jiang HB, Ryu D, Cho M, Bae SJ, Park W, Ha KT, Gao B. The interplay of cellular senescence and reprogramming shapes the biological landscape of aging and cancer revealing novel therapeutic avenues. Front Cell Dev Biol 2025; 13:1593096. [PMID: 40356604 PMCID: PMC12066513 DOI: 10.3389/fcell.2025.1593096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Cellular senescence and cellular reprogramming represent two fundamentally intertwined processes that profoundly influence aging and cancer. This paper explores how the permanent cell-cycle arrest of senescent cells and the identity-resetting capacity of reprogramming jointly shape biological outcomes in later life and tumor development. We synthesize recent findings to show that senescent cells, while halting the proliferation of damaged cells, can paradoxically promote tissue dysfunction and malignancy via their secretory phenotype. Conversely, induced reprogramming of somatic cells-exemplified by Yamanaka factors-resets cellular age and epigenetic marks, offering a potential to rejuvenate aged cells. Key findings highlight shared mechanisms (e.g., DNA damage responses and epigenetic remodeling) and bidirectional crosstalk between these processes: senescence signals can facilitate neighboring cell plasticity, whereas reprogramming attempts can trigger intrinsic senescence programs as a barrier. In aging tissues, transient (partial) reprogramming has been shown to erase senescence markers and restore cell function without inducing tumorigenesis, underlining a novel strategy to combat age-related degeneration. In cancer, we discuss how therapy-induced senescence of tumor cells may induce stem-cell-like traits in some cells and drive relapse, revealing a delicate balance between tumor suppression and tumor promotion. Understanding the interplay between senescence and reprogramming is crucial for developing innovative therapies. By targeting the senescence-reprogramming axis-for instance, via senolytic drugs, SASP inhibitors, or safe reprogramming techniques-there is significant therapeutic potential to ameliorate aging-related diseases and improve cancer treatment. Our findings underscore that carefully modulating cellular senescence and rejuvenation processes could pave the way for novel regenerative and anti-cancer strategies.
Collapse
Affiliation(s)
- Fuan Ding
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ying Yu
- Department of Surgery, Changchun University of Chinese Medicine, Changchun, China
| | - Jiangqi Zhao
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yan Zhang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Zhuo Li
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hong-Bo Jiang
- Department of Dermatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minkyoung Cho
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Bo Gao
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Baker JR, Daly L, Hassibi S, Kimura G, Nishimoto Y, Kizawa Y, Ito K. Senolytic therapy reduces inflammation in epithelial cells from COPD patients and in smoke-exposure mice. Front Med (Lausanne) 2025; 12:1451056. [PMID: 40357269 PMCID: PMC12066254 DOI: 10.3389/fmed.2025.1451056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a disease of accelerated lung aging, with increased numbers of senescent cells found within the COPD Lung. Senescent cells may drive pathology by causing defective tissue repair and driving chronic inflammation via the release of inflammatory mediators known as the senescence-associated secretory phenotype (SASP). Senolytics are a new class of drugs that selectively remove senescent cells but have not previously been studied in COPD. We examined whether senescent cells are maintained during differentiation of COPD airway epithelial cells at the air-liquid interface and examined the role of the senolytic combination of dasatinib and quercetin on these cells and in a smoke-exposure mouse model. Methods Non-smoker and COPD bronchial epithelial cells were differentiated at air-liquid interface (ALI). Senescence markers (p16INKA and p21WAF1) were determined using Western blotting and SASP factors via Olink proteomics and Meso Scale Diagnostics (MSD). Cells and 11 days cigarette smoke (CS)-exposed mice were treated with the senolytic cocktail of dasatinib and quercetin (D + Q). Results Increased senescence markers were maintained in COPD ALI epithelium when differentiated at air-liquid interface, and treatment with D + Q reduced senescence markers, proteases, and Th2 cytokines. Therapeutic oral treatment of D + Q to CS-exposed mice reduced senescence burden while reducing inflammatory cell infiltrates and mouse CXCL1. Conclusion COPD subjects show increased airway epithelial senescence, and these cells can be cleared therapeutically using the senolytic cocktail of D + Q, reducing broad-spectrum pulmonary inflammation in vitro and in vivo.
Collapse
Affiliation(s)
- Jonathan R. Baker
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Leah Daly
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Shyreen Hassibi
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Genki Kimura
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Yuki Nishimoto
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Yasuo Kizawa
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
21
|
Garbarino VR, Palavicini JP, Melendez J, Barthelemy NR, He Y, Kautz TF, Lopez-Cruzan M, Mathews JJ, Xu P, Zhang B, Saliba A, Ragi N, Sharma K, Mason D, Johnson S, Hendrix S, Craft S, Petersen RC, Espindola-Netto JM, Xue A, Tchkonia T, Kirkland JL, Salardini A, Musi N, Bateman RJ, Gonzales MM, Orr ME. Evaluation of exploratory fluid biomarkers from a phase 1 senolytic trial in mild Alzheimer's disease. Neurotherapeutics 2025:e00591. [PMID: 40274471 DOI: 10.1016/j.neurot.2025.e00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Senescent cell accumulation contributes to the progression of age-related disorders including Alzheimer's disease (AD). Clinical trials focused on cellular senescence are in early stages and have yet to establish reliable outcome measures reflecting senescent cell burden or response to senolytics, therapeutics that clear senescent cells. Results from the first open-label trial of senolytics, dasatinib plus quercetin (D + Q), in older adults (N = 5) with early AD demonstrated central nervous system penetration of dasatinib and favorable safety and tolerability. Herein, we present exploratory analyses of senescence and AD-associated analytes in blood, cerebrospinal fluid (CSF) and urine from this study in effort to guide biomarker development for future senolytic trials. Immunoassays, mass spectrometry and transcriptomics were performed and changes in analyte levels were assessed from baseline to post-treatment using paired t-tests. Targeted cytokine and chemokine analyses revealed increases in plasma fractalkine and MMP-7 and CSF IL-6 from baseline to post-treatment. Mass spectrometry indicated stable levels of amyloid β and tau proteins in CSF, unchanged urinary metabolites, and modest treatment-associated lipid profile changes. Targeted transcriptomic analysis of peripheral blood mononuclear cells indicated downregulation of inflammatory genes including FOS, FOSB, IL1β, IL8, JUN, JUNB, PTGS2. The levels and treatment responses of the analytes identified here may help inform trial design and outcomes for senolytic studies. Independent validation will be necessary to develop standardized biomarker panels across senolytic trials for AD. ClinicalTrials.gov: NCT04063124.
Collapse
Affiliation(s)
- Valentina R Garbarino
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Juan Pablo Palavicini
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Justin Melendez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Nicolas R Barthelemy
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Yingxin He
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Tiffany F Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Marisa Lopez-Cruzan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Julia J Mathews
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Afaf Saliba
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nagarjunachary Ragi
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kumar Sharma
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | - Suzanne Craft
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Ailing Xue
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arash Salardini
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Mitzi M Gonzales
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Miranda E Orr
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA; St Louis VA Medical Center, St Louis, MO, USA.
| |
Collapse
|
22
|
Park JH, Jeong EY, Kim YH, Cha SY, Kim HY, Nam YK, Park JS, Kim SY, Lee YJ, Yoon JH, So B, Kim D, Kim M, Byun Y, Lee YH, Shin SS, Park JT. Epigallocatechin Gallate in Camellia sinensis Ameliorates Skin Aging by Reducing Mitochondrial ROS Production. Pharmaceuticals (Basel) 2025; 18:612. [PMID: 40430436 PMCID: PMC12114381 DOI: 10.3390/ph18050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Reactive oxygen species (ROS) generated by mitochondrial dysfunction damage cellular organelles and contribute to skin aging. Therefore, strategies to reduce mitochondrial ROS production are considered important for alleviating skin aging, but no effective methods have been identified. Methods: In this study, we evaluated substances utilized as cosmetic ingredients and discovered Camellia sinensis (C. sinensis) as a substance that reduces mitochondrial ROS levels. Results:C. sinensis extracts were found to act as senolytics that selectively kill senescent fibroblasts containing dysfunctional mitochondria. In addition, C. sinensis extracts facilitated efficient electron transport in the mitochondrial electron transport chain (ETC) by increasing the efficiency of oxidative phosphorylation (OXPHOS), thereby reducing mitochondrial ROS production, a byproduct of the inefficient ETC. This novel mechanism of C. sinensis extracts led to the restoration of skin aging and the skin barrier. Furthermore, epigallocatechin gallate (EGCG) was identified as an active ingredient that plays a key role in C. sinensis extract-mediated skin aging recovery. Indeed, similar to C. sinensis extracts, EGCG reduced ROS and improved skin aging in an artificial skin model. Conclusions: Our data uncovered a novel mechanism by which C. sinensis extract reverses skin aging by reducing mitochondrial ROS production via selective senescent cell death/increased OXPHOS efficiency. Our results suggest that C. sinensis extract or EGCG may be used as a therapeutic agent to reverse skin aging in clinical and cosmetic applications.
Collapse
Affiliation(s)
- Ji Ho Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
| | - Eun Young Jeong
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - Ye Hyang Kim
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - So Yoon Cha
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - Ha Yeon Kim
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - Yeon Kyung Nam
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - Jin Seong Park
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - So Yeon Kim
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - Yoo Jin Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
| | - Jee Hee Yoon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
| | - Byeonghyeon So
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
| | - Duyeol Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
| | - Minseon Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
| | - Song Seok Shin
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
23
|
Arjmand B, Mehran P, Badamchizadeh S, Alavi-Moghadam S, Arjmand R, Rezaei-Tavirani M, Aghayan HR, Larijani B, Vaezi M, Janbabaei G, Hajifathali A. The Role of Aging and Senescence in Bone Marrow Transplantation Outcome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40259169 DOI: 10.1007/5584_2025_861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Bone marrow transplantation is considered a cornerstone in the treatment of hematologic malignancies and blood disorders. While it may offer the possibility of a cure through the use of high-dose chemotherapy and radiation, outcomes are significantly impacted by biological and medical factors. Herein, aging is associated with reduced hematopoiesis, immune function, and overall regenerative capacity of tissues. Growth arrest, a crucial property of cellular senescence, inhibits bone marrow function, lowers immune surveillance in aged adults, and reduces the efficiency of bone marrow transplantation. The clinical course for older recipients is further complicated by the presence of prolonged immunosuppression, slower recovery, and higher complication rates, including life-threatening graft-versus-host disease. Accordingly, there is increasing interest in explaining how aging, cellular senescence, and transplant outcomes are interrelated. The current chapter outlines the mechanisms whereby aging and senescence contribute to the immunological dysregulation and poor bone marrow transplantation outcomes observed in elderly cancer patients. The authors' goal is to suggest therapeutic approaches that will enhance the quality of life and survival rates of elderly bone marrow transplant recipients.
Collapse
Affiliation(s)
- Babak Arjmand
- Hematology-Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Pouya Mehran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Vaezi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Janbabaei
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Ji XM, Dong XX, Li JP, Tai GJ, Qiu S, Wei W, Silumbwe CW, Damdinjav D, Otieno JN, Li XX, Xu M. Fisetin Clears Senescent Cells Through the Pi3k-Akt-Bcl-2/Bcl-xl Pathway to Alleviate Diabetic Aortic Aging. Phytother Res 2025. [PMID: 40259678 DOI: 10.1002/ptr.8507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/23/2025]
Abstract
Vascular aging is a major contributor to age-related cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2DM) induced early arterial aging and excessive senescent cells (SCs) burden in vessels. Inhibiting cellular senescence or eliminating SCs could effectively improve aging-related CVDs. Fisetin, a flavonoid extracted from cotinus coggygria scop, has shown potential in alleviating aging by clearing SCs. This study investigated the unexplored mechanisms and efficacy of fisetin in alleviating T2DM-related aortic aging. The T2DM mouse model was induced using a high-fat diet and low-dose streptozotocin injection. Chronic fisetin treatment's protective effects against aortic aging were assessed via senescence-associated beta-galactosidase (SA-β-Gal) staining, histopathology, and vasomotor function. RNA-sequencing and western blotting identified relevant signaling pathways and protein expression. Fisetin's effects on SCs and senescence-associated secretory phenotype (SASP) factors were evaluated through cell viability, apoptosis, and co-culture assays. Docking simulations suggested fisetin as a potential Phosphoinositide 3-kinase (Pi3k) inhibitor. In vivo, chronic fisetin treatment reduced aortic SCs burden, alleviating T2DM-related and natural aortic aging. In vitro, fisetin selectively induced apoptosis of senescent endothelial cells via regulating the Pi3k-Protein Kinase B (Akt)-B-cell lymphoma (Bcl)-2/Bcl-xl pathway and suppressed SASP and its detrimental effects. Furthermore, fisetin combined with metformin therapy showed superior anti-aging effects on T2DM-related aortic aging compared to metformin monotherapy. In conclusion, chronic fisetin treatment alleviates T2DM-related aortic aging via clearing the SCs burden and abrogating the SASP factors. Fisetin combined with metformin therapy might be a potential therapeutic strategy for T2DM-related CVDs.
Collapse
Affiliation(s)
- Xiao-Man Ji
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin-Xin Dong
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jia-Peng Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guang-Jie Tai
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shu Qiu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Wei
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ceaser Wankumbu Silumbwe
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Davaadagva Damdinjav
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Joseph Nicolao Otieno
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciencea, Dar es Salaam, Tanzania
| | - Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Konar GJ, Vallone KT, Nguyen TD, Patton JG. Analysis of the senescence secretome during zebrafish retina regeneration. FRONTIERS IN AGING 2025; 6:1569422. [PMID: 40308558 PMCID: PMC12040975 DOI: 10.3389/fragi.2025.1569422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Abstract
Introduction Zebrafish possess the innate ability to regenerate any lost or damaged retinal cell type with Müller glia serving as resident stem cells. Recently, we discovered that this process is aided by a population of damage-induced senescent immune cells. As part of the Senescence Associated Secretory Phenotype (SASP), senescent cells secrete numerous factors that can play a role in the modulation of inflammation and remodeling of the retinal microenvironment during regeneration. However, the identity of specific SASP factors that drive initiation and progression of retina regeneration remains unclear. Materials and Methods We mined the SASP Atlas and publicly available RNAseq datasets to identify common, differentially expressed SASP factors after retina injury. These datasets included two distinct acute damage regimens, as well as two chronic, genetic models of retina degeneration. We identified overlapping factors between these models and used genetic knockdown experiments, qRT/PCR and immunohistochemical staining to test a role for one of these factors (npm1a). Results We discovered an overlapping set of 31 SASP-related regeneration factors across all data sets and damage paradigms. These factors are upregulated after damage with functions that span the innate immune system, autophagic processing, cell cycle regulation, and cellular stress responses. From among these, we show that depletion of Nucleophosmin 1 (npm1a) inhibits retina regeneration and decreases senescent cell detection after damage. Discussion Our data suggest that differential expression of SASP factors promotes initiation and progression of retina regeneration after both acute and chronic retinal damage. The existence of a common, overlapping set of 31 factors provides a group of novel therapeutic targets for retina regeneration studies.
Collapse
Affiliation(s)
| | | | | | - James G. Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
26
|
Jin M, Li C, Wu Z, Tang Z, Xie J, Wei G, Yang Z, Huang S, Chen Y, Li X, Chen Y, Liao W, Liao Y, Chen G, Zheng H, Bin J. Inhibiting the Histone Demethylase Kdm4a Restrains Cardiac Fibrosis After Myocardial Infarction by Promoting Autophagy in Premature Senescent Fibroblasts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414830. [PMID: 40231733 DOI: 10.1002/advs.202414830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/26/2025] [Indexed: 04/16/2025]
Abstract
Premature senescent fibroblasts (PSFs) play an important role in regulating the fibrotic process after myocardial infarction (MI), but their effect on cardiac fibrosis remains unknown. Here, the investigation is aimed to determine whether PSFs contribute to cardiac fibrosis and the underlying mechanisms involved. It is observed that premature senescence of fibroblasts is strongly activated in the injured myocardium at 7 days after MI and identified that Kdm4a is located in PSFs by the analysis of scRNA-seq data and immunostaining staining. Moreover, fibroblast specific gain- and loss-of-function assays showed that Kdm4a promoted the premature senescence of fibroblasts and cardiac interstitial fibrosis, contributing to cardiac remodeling in the advanced stage after MI, without influencing early cardiac rupture. ChIP-seq and ChIP-PCR revealed that Kdm4a deficiency promoted autophagy in PSFs by reducing Trim44 expression through increased levels of the H3K9me3 modification in the Trim44 promoter region. Furthermore, a coculture system revealed that Kdm4a overexpression increased the accumulation of PSFs and the secretion of senescence-associated secretory phenotype (SASP) factors, subsequently inducing cardiac fibrosis, which could be reversed by Trim44 interference. Kdm4a induces the premature senescence of fibroblasts through Trim44-mediated autophagy and then facilitates interstitial fibrosis after MI, ultimately resulting in cardiac remodeling, but not affecting ventricular rupture.
Collapse
Affiliation(s)
- Ming Jin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Chuling Li
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| | - Zhaoyi Wu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Zhenquan Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Jingfang Xie
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Zhiwen Yang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| |
Collapse
|
27
|
Calabrese EJ, Pressman P, Hayes AW, Agathokleous E, Dhawan G, Kapoor R, Parmar J, Mssillou I, Calabrese V. Fisetin: hormesis accounts for many of its chemoprotective effects. Biogerontology 2025; 26:90. [PMID: 40208387 DOI: 10.1007/s10522-025-10230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
The present paper provides the first integrated assessment of the capacity of the flavonol, fisetin, to induce hormetic dose responses. Fisetin was shown to induce hormetic dose responses in cellular and in vivo animal model systems affecting a broad range of endpoints of potential therapeutic and public health significance across the entire lifespan. Fisetin was effective in slowing aging processes, acting as a senolytic agent in multiple organ systems, in an hormetic fashion. In addition, fisetin was broadly neuroprotective, including during fetal development, and preventing the toxicity of methylmercury. Since these findings indicate that fisetin may have the potential to induce multi-system chemoprotective effects, it indicates the need to better clarify the absorption and bioavailability of fisetin and ways to enhance its efficiency.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health, School of Public Health and Health Sciences, University of Massachusetts, Morrill I-N344, Amherst, MA, 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences Amritsar, India, Hartford, CT, United States
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | | | - Ibrahim Mssillou
- National Agency of Medicinal and Aromatic Plants, BP 159, Principal, 34000, Taounate, Morocco
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| |
Collapse
|
28
|
Yang Z, Potenza DM, Ming XF. Is Senolytic Therapy in Cardiovascular Diseases Ready for Translation to Clinics? Biomolecules 2025; 15:545. [PMID: 40305307 PMCID: PMC12024785 DOI: 10.3390/biom15040545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Aging is a predominant risk factor for cardiovascular diseases. There is evidence demonstrating that senescent cells not only play a significant role in organism aging but also contribute to the pathogenesis of cardiovascular diseases in younger ages. Encouraged by recent findings that the elimination of senescent cells by pharmacogenetic tools could slow down and even reverse organism aging in animal models, senolytic drugs have been developed, and the translation of results from basic research to clinical settings has been initiated. Because numerous studies in the literature show beneficial therapeutic effects of targeting senescent cells in cardiomyopathies associated with aging and ischemia/reperfusion and in atherosclerotic vascular disease, senolytic drugs are considered the next generation of therapies for cardiovascular disorders. However, recent studies have reported controversial results or detrimental effects caused by senolytic therapeutic approaches, including worsening of cardiac dysfunction, instability of atherosclerotic plaques, and even an increase in mortality in animal models, which challenges the translation of senolytic therapy into the clinical practice. This brief review article will focus on (1) analyzing and discussing the beneficial and detrimental effects of senolytic therapeutic approaches in cardiovascular diseases and cardiovascular aging and (2) future research directions and questions that are essential to understand the controversies and to translate preclinical results of senolytic therapies into clinical practice.
Collapse
Affiliation(s)
- Zhihong Yang
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (D.M.P.); (X.-F.M.)
| | | | | |
Collapse
|
29
|
Zuo X. Mitochondrial Imbalance in Down Syndrome: A Driver of Accelerated Brain Aging? Aging Dis 2025:AD.2025.0189. [PMID: 40249934 DOI: 10.14336/ad.2025.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025] Open
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21 (HSA21), is a complex condition associated with neurodevelopmental impairments and accelerated brain aging, often culminating in early-onset Alzheimer's disease (AD). Central to this accelerated aging is mitochondrial imbalance, characterized by disrupted energy metabolism, increased oxidative stress, impaired dynamics, and defective quality control mechanisms like mitophagy. These abnormalities exacerbate neuronal vulnerability, driving cognitive decline and neurodegeneration. This review examines the genetic and biochemical underpinnings of mitochondrial dysfunction in DS, with a focus on the role of HSA21-encoded genes. We also highlight how mitochondrial dysfunction, amplified by oxidative stress and HSA21 gene dosage effects, converges with cellular senescence and neuroinflammation to accelerate Alzheimer-like pathology and brain aging in DS. Finally, we discuss emerging therapeutic strategies targeting mitochondrial pathways, which hold promise for mitigating neurodegenerative phenotypes and improving outcomes in DS.
Collapse
|
30
|
Molteni R, Fiumara M, Campochiaro C, Alfieri R, Pacini G, Licari E, Tomelleri A, Diral E, Varesi A, Weber A, Quaranta P, Albano L, Gaddoni C, Basso-Ricci L, Stefanoni D, Alessandrini L, Degl'Innocenti S, Sanvito F, Bergonzi GM, Annoni A, Panigada M, Cantoni E, Canarutto D, Xie SZ, D'Alessandro A, Di Micco R, Aiuti A, Ciceri F, De Luca G, Dagna L, Matucci-Cerinic M, Merelli I, Cenci S, Scala S, Cavalli G, Naldini L, Ferrari S. Mechanisms of hematopoietic clonal dominance in VEXAS syndrome. Nat Med 2025:10.1038/s41591-025-03623-9. [PMID: 40195449 DOI: 10.1038/s41591-025-03623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025]
Abstract
Clonal dominance characterizes hematopoiesis during aging and increases susceptibility to blood cancers and common nonmalignant disorders. VEXAS syndrome is a recently discovered, adult-onset, autoinflammatory disease burdened by a high mortality rate and caused by dominant hematopoietic clones bearing somatic mutations in the UBA1 gene. However, pathogenic mechanisms driving clonal dominance are unknown. Moreover, the lack of disease models hampers the development of disease-modifying therapies. In the present study, we performed immunophenotype characterization of hematopoiesis and single-cell transcriptomics in a cohort of nine male patients with VEXAS syndrome, revealing pervasive inflammation across all lineages. Hematopoietic stem and progenitor cells (HSPCs) in patients are skewed toward myelopoiesis and acquire senescence-like programs. Humanized models of VEXAS syndrome, generated by inserting the causative mutation in healthy HSPCs through base editing, recapitulated proteostatic defects, cytological alterations and senescence signatures of patients' cells, as well as hematological and inflammatory disease hallmarks. Competitive transplantations of human UBA1-mutant and wild-type HSPCs showed that, although mutant cells are more resilient to the inflammatory milieu, probably through the acquisition of the senescence-like state, wild-type ones are progressively exhausted and overwhelmed by VEXAS clones, overall impairing functional hematopoiesis and leading to bone marrow failure. Our study unveils the mechanism of clonal dominance and provides models for preclinical studies and preliminary insights that could inform therapeutic strategies.
Collapse
Affiliation(s)
- Raffaella Molteni
- Vita-Salute San Raffaele University, Milan, Italy.
- Inflammation Fibrosis and Ageing Initiative (INFLAGE), Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Martina Fiumara
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Corrado Campochiaro
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Alfieri
- National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Guido Pacini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenia Licari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Tomelleri
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Diral
- Unit of Hematology and Stem Cell Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alessandra Weber
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Gaddoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Stefanoni
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Alessandrini
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Degl'Innocenti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sanvito
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gregorio Maria Bergonzi
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Hematology and Stem Cell Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Panigada
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Cantoni
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Canarutto
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, CO, USA
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University School of Advanced Studies IUSS, Pavia, Italy
| | - Alessandro Aiuti
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Hematology and Stem Cell Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo De Luca
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Dagna
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Matucci-Cerinic
- Vita-Salute San Raffaele University, Milan, Italy
- Inflammation Fibrosis and Ageing Initiative (INFLAGE), Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Simone Cenci
- Vita-Salute San Raffaele University, Milan, Italy
- Inflammation Fibrosis and Ageing Initiative (INFLAGE), Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Translational Medicine, Novartis Pharma, Basel, Switzerland
| | - Luigi Naldini
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Ferrari
- Vita-Salute San Raffaele University, Milan, Italy.
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
31
|
Gergues M, Bari R, Koppisetti S, Gosiewska A, Kang L, Hariri RJ. Senescence, NK cells, and cancer: navigating the crossroads of aging and disease. Front Immunol 2025; 16:1565278. [PMID: 40255394 PMCID: PMC12006071 DOI: 10.3389/fimmu.2025.1565278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Cellular senescence, a state of stable cell cycle arrest, acts as a double-edged sword in cancer biology. In young organisms, it acts as a barrier against tumorigenesis, but in the aging population, it may facilitate tumor growth and metastasis through the senescence-associated secretory phenotype (SASP). Natural killer (NK) cells play a critical role in the immune system, particularly in the surveillance, targeting, and elimination of malignant and senescent cells. However, age-related immunosenescence is characterized by declining NK cell function resulting in diminished ability to fight infection, eliminate senescent cells and suppress tumor development. This implies that preserving or augmenting NK cell function may be central to defense against age-related degenerative and malignant diseases. This review explores the underlying mechanisms behind these interactions, focusing on how aging influences the battle between the immune system and cancer, the implications of senescent NK cells in disease progression, and the potential of adoptive NK cell therapy as a countermeasure to these age-related immunological challenges.
Collapse
Affiliation(s)
| | | | | | | | - Lin Kang
- Research and Development, Celularity Inc., Florham Park, NJ, United States
| | | |
Collapse
|
32
|
Madhurakkat Perikamana S, Newman H, Vernon Shih Y, Duncan L, Rather HA, Li J, Velagapudi R, Terrando N, Varghese S. Depletion of senescent cells improves surgery-induced neuroinflammation in aged mice. PNAS NEXUS 2025; 4:pgaf103. [PMID: 40264849 PMCID: PMC12012716 DOI: 10.1093/pnasnexus/pgaf103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025]
Abstract
Aging has been identified as a leading risk factor for many diseases, including neurodegenerative disorders. While cellular senescence has been linked to age-related neurodegenerative conditions, its involvement in peripheral stress-associated brain disorders is just beginning to be explored. In this study, we investigated the impact of senescent cells on peripheral stress-induced neuroinflammation using orthopedic surgery as a model. Our results demonstrate an increased accumulation of senescent cells and neuroinflammation in the aged mouse hippocampus following surgery. Intermittent treatment of the mice with the senolytic drugs dasatinib and quercetin (D/Q) showed a significant reduction in surgery-induced senescent cell burden. This reduction in senescent cell accumulation was correlated with reduced surgery-induced neuroinflammation, as evidenced by decreased glial cell activity. Consistent with these observations, we also observed reduced levels of proinflammatory senescence-associated secretory phenotype factors in circulation, following fracture surgery, in mice treated with D/Q. Overall, our findings underscore the pivotal role of cellular senescence in surgery-induced neuroinflammation and highlight the therapeutic potential of eliminating senescent cells as a potential strategy to manage peripheral stress-induced neuroinflammatory conditions.
Collapse
Affiliation(s)
| | - Hunter Newman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lavonia Duncan
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Hilal Ahmad Rather
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiaoni Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Ravikanth Velagapudi
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA
| |
Collapse
|
33
|
Zhang B, Zhang D, Chen K, Wu T. Silibinin's role in counteracting neuronal apoptosis and synaptic dysfunction in Alzheimer's disease models. Apoptosis 2025; 30:861-879. [PMID: 39833635 DOI: 10.1007/s10495-024-02073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
This study investigates silibinin's capacity to mitigate Alzheimer's disease (AD) pathologies with a particular emphasis on its effects on apoptosis and synaptic dysfunction in AD models. Employing APP/PS1 transgenic mice and SH-SY5Y neuroblastoma cell lines, our research assessed the efficacy of silibinin in reducing amyloid-beta (Aβ) deposition, neuroinflammation, and neuronal apoptosis. Our results demonstrate that silibinin significantly decreases Aβ accumulation and neuroinflammation and robustly inhibits apoptosis in neuronal cells. Additionally, silibinin enhances the expression of synaptic proteins, thereby supporting synaptic integrity. Through network pharmacology analysis, we identified potential targets of silibinin in Aβ metabolism and synaptic functions. Mechanistically, our findings suggest that silibinin promotes neuronal survival predominantly via the modulation of the Fyn/GluN2B/CaMKIIα signaling pathway, which protects against Aβ1-42-induced apoptosis. These insights highlight silibinin's potential as a therapeutic agent for AD, particularly its role in reducing neuronal apoptosis and maintaining synaptic function.
Collapse
Affiliation(s)
- Baohui Zhang
- Department of Neurobiology, China Medical University, Shenyang, 110122, China
- Journal Center, China Medical University, Shenyang, 110122, China
| | - Di Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, No. 77, Puhe Road, Shenbei New District, Shenyang, Liaoning Province, 110122, China.
| | - Tengfei Wu
- Department of Laboratory Animal Science, China Medical University, No. 77, Puhe Road, Shenbei New District, Shenyang, Liaoning Province, 110122, China.
| |
Collapse
|
34
|
Poulios P, Skampouras S, Piperi C. Deciphering the role of cytokines in aging: Biomarker potential and effective targeting. Mech Ageing Dev 2025; 224:112036. [PMID: 39832637 DOI: 10.1016/j.mad.2025.112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Aging is often characterized by chronic inflammation, immune system dysregulation, and cellular senescence with chronically elevated levels of pro-inflammatory cytokines. These small glycoproteins are mainly secreted by immune cells, mediating intercellular communication and immune system modulation through inflammatory signaling. Their pro- and anti-inflammatory effects make them a noteworthy research topic as well as a promising ally in combating inflammation and the aging process. Cytokines exert a synergistic role in aging and disease and may prove useful biomarkers of tissue-specific dysregulation, disease diagnosis and monitoring, presenting potential therapeutic options as anti-inflammatory and senolytic medications. In this review, we address the cellular and molecular mechanisms implicating cytokines in the aging process and related diseases, highlighting their biomarker potential. We focus on the current therapeutic strategies, including specific pharmaceutical agents, supplements, a balanced diet, and healthy habits such as exercise, stress management, and caloric restriction.
Collapse
Affiliation(s)
- Panagiotis Poulios
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Stamoulis Skampouras
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
35
|
Sangfuang N, McCoubrey LE, Awad A, Marzorati M, Ghyselinck J, Verstrepen L, Munck JD, Medts JD, Gaisford S, Basit AW. Effects of senotherapeutics on gut microbiome dysbiosis and intestinal inflammation in Crohn's disease: A pilot study. Transl Res 2025; 278:36-47. [PMID: 39986536 DOI: 10.1016/j.trsl.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation in the gastrointestinal tract, and is usually accompanied by dysbiosis in the gut microbiome, a factor that contributes to disease progression. Excessive production of reactive oxygen species (ROS) because of gut microbiome dysbiosis-one of the hallmark features of IBD-promotes chronic inflammation and facilitates the transformation of normal cells into senescent cells. Cellular senescence is associated with the development of various chronic and age-related diseases. We hypothesise that senolytic agents, specifically dasatinib (D) and quercetin (Q), could have a beneficial effect on both the gut microbiome and intestinal cells in IBD. The modulatory effects of a combination of D + Q was assessed in the M-SHIME model with faecal microbiota sourced from Crohn's disease patients. D + Q significantly modulated butyrate and lactate levels in the samples from specific patients. In addition, metabolomic analysis showed that D + Q positively impacted the abundance of anti-inflammatory bacteria while also significantly reducing the several species of pathogenic bacteria. Findings from a Caco-2 cell/THP1 co-culture model of IBD demonstrated that D + Q exerted strong immunomodulatory effects on the gut epithelium, evidenced by reduced NF-kB activity, and lower levels of the pro-inflammatory markers TNF-α, CXCL-10, and MCP-1. Furthermore, D + Q induced the secretion of anti-inflammatory cytokines, including IL-6 and IL-10. However, it should be noted that D + Q also led to the secretion of the pro-inflammatory cytokines IL-8. These findings suggest that D + Q could offer a novel therapeutic approach for advanced IBD management by modulating both the gut microbiome and inflammatory pathways. The results support the potential repurposing of senotherapeutic agents as a strategy for addressing the chronic inflammation central to IBD pathogenesis.
Collapse
Affiliation(s)
| | - Laura E McCoubrey
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK; Now at Drug Product Development, GSK R&D, Ware SG12 0GX, UK
| | - Atheer Awad
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK; Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
| | | | | | | | | | | | - Simon Gaisford
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Abdul W Basit
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
36
|
Du K, Umbaugh DS, Wang L, Jun JH, Dutta RK, Oh SH, Ren N, Zhang Q, Ko DC, Ferreira A, Hill J, Gao G, Pullen SS, Jain V, Gregory S, Abdelmalek MF, Diehl AM. Targeting senescent hepatocytes for treatment of metabolic dysfunction-associated steatotic liver disease and multi-organ dysfunction. Nat Commun 2025; 16:3038. [PMID: 40155379 PMCID: PMC11953480 DOI: 10.1038/s41467-025-57616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/23/2025] [Indexed: 04/01/2025] Open
Abstract
Senescent hepatocytes accumulate in metabolic dysfunction-associated steatotic liver disease (MASLD) and are linked to worse clinical outcomes. However, their heterogeneity and lack of specific markers have made them difficult to target therapeutically. Here, we define a senescent hepatocyte gene signature (SHGS) using in vitro and in vivo models and show that it tracks with MASLD progression/regression across mouse models and large human cohorts. Single-nucleus RNA-sequencing and functional studies reveal that SHGS+ hepatocytes originate from p21+ cells, lose key liver functions and release factors that drive disease progression. One such factor, GDF15, increases in circulation alongside SHGS+ burden and disease progression. Through chemical screening, we identify senolytics that selectively eliminate SHGS+ hepatocytes and improve MASLD in male mice. Notably, SHGS enrichment also correlates with dysfunction in other organs. These findings establish SHGS+ hepatocytes as key drivers of MASLD and highlight a potential therapeutic strategy for targeting senescent cells in liver disease and beyond.
Collapse
Affiliation(s)
- Kuo Du
- Department of Medicine, Duke University, Durham, NC, USA.
| | | | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ji Hye Jun
- Department of Medicine, Duke University, Durham, NC, USA
| | - Rajesh K Dutta
- Department of Medicine, Duke University, Durham, NC, USA
| | - Seh Hoon Oh
- Department of Medicine, Duke University, Durham, NC, USA
| | - Niansheng Ren
- Department of Medicine, Duke University, Durham, NC, USA
| | - Qiaojuan Zhang
- Department of Neurology, Duke University, Durham, NC, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ana Ferreira
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Jon Hill
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Guannan Gao
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Steven S Pullen
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Simon Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
37
|
Li K, Tang H, Cao X, Zhang X, Wang X. PTEN: A Novel Diabetes Nephropathy Protective Gene Related to Cellular Senescence. Int J Mol Sci 2025; 26:3088. [PMID: 40243723 PMCID: PMC11988946 DOI: 10.3390/ijms26073088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). The current diagnostic and therapeutic approaches need to be improved. Cellular senescence has been implicated in the pathogenesis of DN, but its precise role remains unclear. This study aimed to identify key pathogenic genes related to cellular senescence in DN and explore their potential as diagnostic biomarkers. Using transcriptomic data from GEO datasets (GSE96804, GSE30122, GSE142025, and GSE104948) and cellular senescence-related genes sourced from the GenAge database, we integrated multiple bioinformatics approaches, including differential expression analysis, weighted gene co-expression network analysis (WGCNA), machine learning and protein-protein interaction (PPI), to identify diagnostic genes. PTEN was identified as a key diagnostic gene. Immune infiltration analysis revealed that PTEN expression is positively correlated with macrophage M2 and dendritic cell resting infiltration and negatively correlated with monocytes and neutrophils. snRNA analysis revealed that PTEN is mainly expressed in mesangial cells. Finally, RT-PCR results revealed that the mRNA expression of PTEN was upregulated in kidneys from db/db mice. Additionally, high-glucose treatment significantly upregulated PTEN expression in cultured human mesangial cells. This study identifies PTEN as a potential diagnostic biomarker for DN which may contribute to early detection and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Kang Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Huidi Tang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiaoqing Cao
- Department of Cardiology, Shandong Public Health Clinical Center, Shandong University, Jinan 250013, China
| | - Xiaoli Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
38
|
Viteri JA, Kerr NR, Brennan CD, Kick GR, Wang M, Ketabforoush A, Snyder HK, Moore PJ, Darvishi FB, Dashtmian AR, Ayyagari SN, Rich K, Zhu Y, Arnold WD. Targeting senescence in Amyotrophic Lateral Sclerosis: senolytic treatment improves neuromuscular function and preserves cortical excitability in a TDP-43 Q331K mouse model. RESEARCH SQUARE 2025:rs.3.rs-6081213. [PMID: 40196013 PMCID: PMC11975006 DOI: 10.21203/rs.3.rs-6081213/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder marked by progressive motor neuron degeneration in the primary motor cortex (PMC) and spinal cord. Aging is a key factor in ALS onset and progression, with evidence suggesting that biological aging-a process involving cellular decline- far outpaces chronological aging in ALS. This promotes senescent cell accumulation-marked by irreversible cell-cycle arrest, impaired apoptosis, and chronic inflammation-disrupting tissue homeostasis and impairing neuronal support functions. Thus, targeting senescence presents a novel therapeutic strategy for ALS. Here, we investigated the senolytic combination Dasatinib and Quercetin (D&Q) in TDP-43Q331K ALS mice. D&Q improved neuromuscular function and reduced plasma neurofilament light chain, a biomarker of axonal damage. The most pronounced improvement was the improved cortical excitability, accompanied by reductions in senescence and TDP-43 in the PMC. These findings highlight the potential of senolytics to mitigate ALS-related dysfunction, supporting their viability as a therapeutic strategy.
Collapse
Affiliation(s)
- Jose A Viteri
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO USA; NextGen Precision Health, University of Missouri-Columbia, Columbia, MO USA
| | - Nathan R Kerr
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO USA; NextGen Precision Health, University of Missouri-Columbia, Columbia, MO USA
| | - Charles D Brennan
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO USA; NextGen Precision Health, University of Missouri-Columbia, Columbia, MO USA
| | - Grace R Kick
- Department of Ophthalmology, University of Missouri-Columbia, Columbia, MO USA
| | - Meifang Wang
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO USA; NextGen Precision Health, University of Missouri-Columbia, Columbia, MO USA
| | - Arsh Ketabforoush
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO USA; NextGen Precision Health, University of Missouri-Columbia, Columbia, MO USA
| | - Harper K Snyder
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO USA; NextGen Precision Health, University of Missouri-Columbia, Columbia, MO USA
| | - Peter J Moore
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO USA; NextGen Precision Health, University of Missouri-Columbia, Columbia, MO USA
| | - Fereshteh B Darvishi
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO USA; NextGen Precision Health, University of Missouri-Columbia, Columbia, MO USA
| | - Anna Roshani Dashtmian
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO USA; NextGen Precision Health, University of Missouri-Columbia, Columbia, MO USA
| | - Sindhuja N Ayyagari
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO USA; NextGen Precision Health, University of Missouri-Columbia, Columbia, MO USA
| | - Kelly Rich
- Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Yi Zhu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Robert & Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - W David Arnold
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO USA; NextGen Precision Health, University of Missouri-Columbia, Columbia, MO USA
| |
Collapse
|
39
|
Vogler M, Braun Y, Smith VM, Westhoff MA, Pereira RS, Pieper NM, Anders M, Callens M, Vervliet T, Abbas M, Macip S, Schmid R, Bultynck G, Dyer MJ. The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduct Target Ther 2025; 10:91. [PMID: 40113751 PMCID: PMC11926181 DOI: 10.1038/s41392-025-02176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The B cell lymphoma 2 (BCL2) protein family critically controls apoptosis by regulating the release of cytochrome c from mitochondria. In this cutting-edge review, we summarize the basic biology regulating the BCL2 family including canonical and non-canonical functions, and highlight milestones from basic research to clinical applications in cancer and other pathophysiological conditions. We review laboratory and clinical development of BH3-mimetics as well as more recent approaches including proteolysis targeting chimeras (PROTACs), antibody-drug conjugates (ADCs) and tools targeting the BH4 domain of BCL2. The first BCL2-selective BH3-mimetic, venetoclax, showed remarkable efficacy with manageable toxicities and has transformed the treatment of several hematologic malignancies. Following its success, several chemically similar BCL2 inhibitors such as sonrotoclax and lisaftoclax are currently under clinical evaluation, alone and in combination. Genetic analysis highlights the importance of BCL-XL and MCL1 across different cancer types and the possible utility of BH3-mimetics targeting these proteins. However, the development of BH3-mimetics targeting BCL-XL or MCL1 has been more challenging, with on-target toxicities including thrombocytopenia for BCL-XL and cardiac toxicities for MCL1 inhibitors precluding clinical development. Tumor-specific BCL-XL or MCL1 inhibition may be achieved by novel targeting approaches using PROTACs or selective drug delivery strategies and would be transformational in many subtypes of malignancy. Taken together, we envision that the targeting of BCL2 proteins, while already a success story of translational research, may in the foreseeable future have broader clinical applicability and improve the treatment of multiple diseases.
Collapse
Affiliation(s)
- Meike Vogler
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Yannick Braun
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Victoria M Smith
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Raquel S Pereira
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Nadja M Pieper
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Marius Anders
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Manon Callens
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Tim Vervliet
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Maha Abbas
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Salvador Macip
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Martin Js Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
40
|
Spiegel M. Fisetin as a Blueprint for Senotherapeutic Agents - Elucidating Geroprotective and Senolytic Properties with Molecular Modeling. Chemistry 2025; 31:e202403755. [PMID: 39688310 PMCID: PMC11914956 DOI: 10.1002/chem.202403755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
Targeting senescent cells and the factors that accelerate this pathological state has recently emerged as a novel field in medicinal chemistry. As attention shifts to synthetic substances, studies on natural agents are often overlooked. In this paper, we present a detailed computational modeling study that encompasses quantum mechanics and molecular dynamics to elucidate the senotherapeutic activity of fisetin, a natural flavonoid. The mitochondrial environment, serving as a proxy for senescence, received special attention. Throughout the study, fisetin's outstanding geroprotective properties-exhibiting significant potential against ⋅OOH, O2⋅-, and ⋅OH radicals, surpassing those of Trolox or ascorbate-were identified. Furthermore, fisetin demonstrated a high capacity to restore oxidatively damaged biomolecules to their pristine forms, thereby renewing the functionality of proteins and amino acids. The senolytic properties were examined in terms of Bcl-2 and Bcl-xL inhibition. The results indicated that fisetin not only binds effectively to these proteins but also, with appropriate modifications, may exhibit specific selectivity toward either target. This study highlights fisetin's remarkable activity in these areas and provides a molecular description of the underlying processes, paving the way for future research.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Organic Chemistry and Pharmaceutical TechnologyFaculty of PharmacyWroclaw Medical UniversityBorowska 211A50–556WroclawPoland
| |
Collapse
|
41
|
Li Q, Xiao N, Zhang H, Liang G, Lin Y, Qian Z, Yang X, Yang J, Fu Y, Zhang C, Liu A. Systemic aging and aging-related diseases. FASEB J 2025; 39:e70430. [PMID: 40022602 DOI: 10.1096/fj.202402479rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Aging is a biological process along with systemic and multiple organ dysfunction. It is more and more recognized that aging is a systemic disease instead of a single-organ functional disorder. Systemic aging plays a profound role in multiple diseases including neurodegenerative diseases, cardiovascular diseases, and malignant diseases. Aged organs communicate with other organs and accelerate aging. Skeletal muscle, heart, bone marrow, skin, and liver communicate with each other through organ-organ crosstalk. The crosstalk can be mediated by metabolites including lipids, glucose, short-chain fatty acids (SCFA), inflammatory cytokines, and exosomes. Metabolic disorders including hyperglycemia, hyperinsulinemia, and hypercholesterolemia caused by chronic diseases accelerate hallmarks of aging. Systemic aging leads to the destruction of systemic hemostasis, causes the release of inflammatory cytokines, senescence-associated secretory phenotype (SASP), and the imbalance of microbiota composition. Released inflammatory factors further aggregate senescence, which promotes the aging of multiple solid organs. Targeting senescence or delaying aging is emerging as a critical health strategy for solving age-related diseases, especially in the old population. In the current review, we will delineate the mechanisms of organ crosstalk in systemic aging and age-related diseases to provide therapeutic targets for delaying aging.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zonghao Qian
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yanguang Fu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
42
|
Mannarino M, Cherif H, Ghazizadeh S, Martinez OW, Sheng K, Cousineau E, Lee S, Millecamps M, Gao C, Gilbert A, Peirs C, Naeini RS, Ouellet JA, S. Stone L, Haglund L. Senolytic treatment for low back pain. SCIENCE ADVANCES 2025; 11:eadr1719. [PMID: 40085710 PMCID: PMC11908501 DOI: 10.1126/sciadv.adr1719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025]
Abstract
Senescent cells (SnCs) accumulate because of aging and external cellular stress throughout the body. They adopt a senescence-associated secretory phenotype (SASP) and release inflammatory and degenerative factors that actively contribute to age-related diseases, such as low back pain (LBP). The senolytics, o-vanillin and RG-7112, remove SnCs in human intervertebral discs (IVDs) and reduce SASP release, but it is unknown whether they can treat LBP. sparc-/- mice, with LBP, were treated orally with o-vanillin and RG-7112 as single or combination treatments. Treatment reduced LBP and SASP factor release and removed SnCs from the IVD and spinal cord. Treatment also lowered degeneration scores in the IVDs, improved vertebral bone quality, and reduced the expression of pain markers in the spinal cord. Together, our data suggest RG-7112 and o-vanillin as potential disease-modifying drugs for LBP and other painful disorders linked to cell senescence.
Collapse
Affiliation(s)
- Matthew Mannarino
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, QC, Canada
- ABC-platform (Animal Behavioral Characterization) at the Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, QC, Canada
| | - Hosni Cherif
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, QC, Canada
- Department of Surgery, McGill Scoliosis and Spine Group, McGill University, Montreal, QC, Canada
| | - Saber Ghazizadeh
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, QC, Canada
| | - Oliver Wu Martinez
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, QC, Canada
| | - Kai Sheng
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, QC, Canada
- Shriner’s Hospital for Children, Montreal, QC, Canada
| | - Elsa Cousineau
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, QC, Canada
| | - Seunghwan Lee
- ABC-platform (Animal Behavioral Characterization) at the Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, QC, Canada
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, USA
| | - Magali Millecamps
- ABC-platform (Animal Behavioral Characterization) at the Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, QC, Canada
| | - Chan Gao
- Division of Physiatry, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Alice Gilbert
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, QC, Canada
- Department of Physiology and Cell Information Systems, McGill University, Montreal, QC, Canada
- Université Clermont-Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Cedric Peirs
- Université Clermont-Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Reza Sharif Naeini
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, QC, Canada
- Department of Physiology and Cell Information Systems, McGill University, Montreal, QC, Canada
| | - Jean A. Ouellet
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, QC, Canada
- Department of Surgery, McGill Scoliosis and Spine Group, McGill University, Montreal, QC, Canada
- Shriner’s Hospital for Children, Montreal, QC, Canada
| | - Laura S. Stone
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, QC, Canada
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, USA
| | - Lisbet Haglund
- Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, QC, Canada
- Department of Surgery, McGill Scoliosis and Spine Group, McGill University, Montreal, QC, Canada
- Shriner’s Hospital for Children, Montreal, QC, Canada
| |
Collapse
|
43
|
Rahbar Saadat Y, Abbasi A, Hejazian SS, Hekmatshoar Y, Ardalan M, Farnood F, Zununi Vahed S. Combating chronic kidney disease-associated cachexia: A literature review of recent therapeutic approaches. BMC Nephrol 2025; 26:133. [PMID: 40069669 PMCID: PMC11895341 DOI: 10.1186/s12882-025-04057-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/05/2025] [Indexed: 03/15/2025] Open
Abstract
In 2008, the Society on Sarcopenia, Cachexia, and Wasting Disorders introduced a generic definition for all types of cachexia: "a complex metabolic syndrome associated with the underlying illness characterized by a loss of muscle, with or without fat loss". It is well-known that the presence of inflammatory burden in end-stage renal disease (ESRD) patients may lead to the evolution of cachexia. Since the etiology of cachexia in chronic kidney disease (CKD) is multifactorial, thus the successful treatment must involve several concomitant measures (nutritional interventions, appetite stimulants, and anti-inflammatory pharmacologic agents) to provide integrated effective therapeutic modalities to combat causative factors and alleviate the outcomes of patients. Given the high mortality rate associated with cachexia, developing new therapeutic modalities are prerequisite for ameliorating patients with CKD worldwide. The present review aims to discuss some therapeutic strategies and provide an update on advances in nutritional approaches to counteract cachexia.
Collapse
Affiliation(s)
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Sina Hejazian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Hekmatshoar
- Medical Biology Department, School of Medicine, Altinbas University, Istanbul, Türkiye
| | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
44
|
Schweiger A, Diniz B, Nicol G, Schweiger J, Dasklakis-Perez AE, Lenze EJ. Protocol for a pilot clinical trial of the senolytic drug combination Dasatinib Plus Quercetin to mitigate age-related health and cognitive decline in mental disorders. F1000Res 2025; 13:1072. [PMID: 40443429 PMCID: PMC12120425 DOI: 10.12688/f1000research.151963.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 06/02/2025] Open
Abstract
Background Major depressive disorder (MDD) and schizophrenia are linked to accelerated aging leading to reduced lifespan, health span and cognitive decline. Cellular senescence, in which cells lose proliferative capacity and develop a senescence-associated secretory phenotype (SASP), plays a role in this process. Emerging research suggests that the senolytic regimen of dasatinib+quercetin (D+Q) reduces senescent cells, potentially mitigating age-related health and cognitive decline. This pilot study aims to assess the feasibility and safety of D+Q in older adults with schizophrenia, schizoaffective disorder, and treatment-resistant depression (TRD). Methods This single-center study will recruit 30 participants total aged 50 years or older with schizophrenia/schizoaffective disorder or 60 years or older with TRD; the difference in age limits is because individuals with schizophrenia are biologically about 10 years older than general population owing to metabolic burden. Each participant will receive two consecutive days of 100 mg oral dasatinib plus 1250 mg oral quercetin at baseline and weeks one through three, (i.e., two days on, five days off ) along with lifestyle risk management education.Questionnaires and assessments will measure health and cognitive function as well as psychiatric function at baseline, week 10, and one year. Magnetic Resonance Imaging (MRI) will measure structural and functional brain health at baseline and 10 weeks. Blood sampling for SASP testing will occur at seven time points: baseline, weeks one through four, week 10, and one year. Conclusion This pilot aims to evaluate the safety and feasibility of the senolytic regimen and D+Q's potential to counteract accelerated aging in adults with schizophrenia/schizoaffective disorder and TRD. Trial registration Dasatinib Plus Quercetin for Accelerated Aging in Mental Disorders is registered on ClinicalTrials.gov: NCT05838560; posted May 1, 2023.
Collapse
Affiliation(s)
- Abigail Schweiger
- Social Work, Saint Louis University School of Social Work, St. Louis, Missouri, 63103, USA
- Psychiatry, Washington University in St Louis School of Medicine, St. Louis, Missouri, 63108, USA
| | - Breno Diniz
- Psychiatry, University of Connecticut Department of Psychiatry, Farmington, Connecticut, 06030-1419, USA
| | - Ginger Nicol
- Psychiatry, Washington University in St Louis School of Medicine, St. Louis, Missouri, 63108, USA
| | - Julie Schweiger
- Psychiatry, Washington University in St Louis School of Medicine, St. Louis, Missouri, 63108, USA
| | - Andes E. Dasklakis-Perez
- Psychiatry, Washington University in St Louis School of Medicine, St. Louis, Missouri, 63108, USA
| | - Eric J Lenze
- Psychiatry, Washington University in St Louis School of Medicine, St. Louis, Missouri, 63108, USA
| |
Collapse
|
45
|
Tang Q, Tang K, Markby GR, Parys M, Phadwal K, MacRae VE, Corcoran BM. Autophagy regulates cellular senescence by mediating the degradation of CDKN1A/p21 and CDKN2A/p16 through SQSTM1/p62-mediated selective autophagy in myxomatous mitral valve degeneration. Autophagy 2025:1-23. [PMID: 39988732 DOI: 10.1080/15548627.2025.2469315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
Myxomatous mitral valve degeneration (MMVD) is one of the most important age-dependent degenerative heart valve disorders in both humans and dogs. It is characterized by the aberrant remodeling of extracellular matrix (ECM), regulated by senescent myofibroblasts (aVICs) transitioning from quiescent valve interstitial cells (qVICs), primarily under TGFB1/TGF-β1 control. In the present study, we found senescent aVICs exhibited impaired macroautophagy/autophagy as evidenced by compromised autophagy flux and immature autophagosomes. MTOR-dependent autophagy induced by rapamycin and torin-1 attenuated cell senescence and decreased the expression of cyclin-dependent kinase inhibitors (CDKIs) CDKN2A/p16INK4A and CDKN1A/p21CIP1. Furthermore, induction of autophagy in aVICs by ATG (autophagy related) gene overexpression restored autophagy flux, with a concomitant reduction in CDKN1A and CDKN2A expression and senescence-associated secretory phenotype (SASP). Conversely, autophagy deficiency induced CDKN1A and CDKN2A accumulation and SASP, whereas ATG re-expression alleviated senescent phenotypic transformation. Notably, CDKN1A and CDKN2A localized to autophagosomes and lysosomes following MTOR antagonism or MG132 treatment. SQSTM1/p62 was identified as the autophagy receptor to selectively sequester CDKN1A and CDKN2A cargoes for autophagic degradation. Our findings are the first demonstration that CDKN1A and CDKN2A are degraded through SQSTM1-mediated selective autophagy, independent of the ubiquitin-proteasome pathway. These data will inform development of therapeutic strategies for the treatment of canine and human MMVD, and for the treatment of Alzheimer disease, Parkinson disease and other age-related degenerative disorders.Abbreviations: ACTA2/α-SMA: actin alpha 2, smooth muscle; AKT: AKT serine/threonine kinase; aVICs: activated valve interstitial cells; ATG: autophagy related; baf-A1: bafilomycin A1; BrdU, bromodeoxyuridine; BSA: bovine serum albumin; CDKIs, cyclin-dependent kinase inhibitors; CDKN1A/p21: cyclin dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; co-IP: co-immunoprecipitation; DMSO: dimethylsulfoxide; ECM, extracellular matrix; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; eGFP: green fluorescent protein; ELISA: enzyme-linked immunosorbent assay; HEK-293T, human embryonic kidney 293T; HRP: horseradish peroxidase; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LIR: MAP1LC3/LC3-interacting region; MFS: Marfan syndrome; MKI67/Ki-67: marker of proliferation Ki-67; MMVD: myxomatous mitral valve degeneration; MTOR: mechanistic target of rapamycin kinase; MTORC: MTOR complex; OE: overexpression; PBST, phosphate-buffered saline with 0.1% Tween-20; PCNA: proliferating cell nuclear antigen; PIK3CA/PI3K: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PLA: proximity ligation assays; PSMA1: proteasome 20S subunit alpha 1; PSMB5: proteasome 20S subunit beta 5; qVICs: quiescent valve interstitial cells; qRT-PCR: quantitative real-time PCR; SA-GLB1/β-gal: SA-senescence-associated GLB1/β-galactosidase; ROS: reactive oxygen species; SASP: senescence-associated secretory phenotype; RPS6KB1/p70 S6K: ribosomal protein S6 kinase B1; SMAD: SMAD family member; SQSTM1/p62: sequestosome 1; STEM: scanning transmission electron microscopy; TGFB: transforming growth factor beta; TGFBR: transforming growth factor beta receptor; TP53/p53: tumor protein p53; UPS: ubiquitin-proteasome system; WT, wild-type.
Collapse
Affiliation(s)
- Qiyu Tang
- The Roslin Institute, The University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Keyi Tang
- The Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Greg R Markby
- The Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Maciej Parys
- The Roslin Institute, The University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Kanchan Phadwal
- The Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Vicky E MacRae
- The Roslin Institute, The University of Edinburgh, Edinburgh, UK
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK
| | - Brendan M Corcoran
- The Roslin Institute, The University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
46
|
Xu W, Guo Y, Zhao L, Fu R, Qin X, Zhang Y, Cheng X, Xu S. The Aging Immune System: A Critical Attack on Ischemic Stroke. Mol Neurobiol 2025; 62:3322-3342. [PMID: 39271626 DOI: 10.1007/s12035-024-04464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke caused by cerebrovascular embolism is an age-related disease with high rates of disability and mortality. Although the mechanisms of immune and inflammatory development after stroke have been of great interest, most studies have neglected the critical and unavoidable factor of age. As the global aging trend intensifies, the number of stroke patients is constantly increasing, emphasizing the urgency of finding effective measures to address the needs of elderly stroke patients. The concept of "immunosenescence" appears to explain the worse stroke outcomes in older individuals. Immune remodeling due to aging involves dynamic changes at all levels of the immune system, and the overall consequences of central (brain-resident) and peripheral (non-brain-resident) immune cells in stroke vary according to the age of the individual. Lastly, the review outlines recent strategies aimed at immunosenescence to improve stroke prognosis.
Collapse
Affiliation(s)
- Wenzhe Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Linna Zhao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Rong Fu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoli Qin
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqi Cheng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
47
|
Légaré C, Berglund JA, Duchesne E, Dumont NA. New Horizons in Myotonic Dystrophy Type 1: Cellular Senescence as a Therapeutic Target. Bioessays 2025; 47:e202400216. [PMID: 39723693 PMCID: PMC11848125 DOI: 10.1002/bies.202400216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Myotonic dystrophy type 1 (DM1) is considered a progeroid disease (i.e., causing premature aging). This hypervariable disease affects multiple systems, such as the musculoskeletal, central nervous, gastrointestinal, and others. Despite advances in understanding the underlying pathogenic mechanism of DM1, numerous gaps persist in our understanding, hindering elucidation of the heterogeneity and severity of its symptoms. Accumulating evidence indicates that the toxic intracellular RNA accumulation associated with DM1 triggers cellular senescence. These cells are in a state of irreversible cell cycle arrest and secrete a cocktail of cytokines, referred to as a senescence-associated secretory phenotype (SASP), that can have harmful effects on neighboring cells and more broadly. We hypothesize that cellular senescence contributes to the pathophysiology of DM1, and clearance of senescent cells is a promising therapeutic approach for DM1. We will discuss the therapeutic potential of different senotherapeutic drugs, especially senolytics that eliminate senescent cells, and senomorphics that reduce SASP expression.
Collapse
Affiliation(s)
- Cécilia Légaré
- RNA InstituteCollege of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
- School of Rehabilitation SciencesFaculty of MedicineUniversité LavalQuebecQuebecCanada
- CHU de Québec – Université Laval Research CenterQuébecQuébecCanada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN)Centre intégré universitaire de santé et de services sociaux du Saguenay‐Lac‐Saint‐JeanSaguenayQuebecCanada
| | - J. Andrew Berglund
- RNA InstituteCollege of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
- Department of Biological Sciences, College of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
| | - Elise Duchesne
- School of Rehabilitation SciencesFaculty of MedicineUniversité LavalQuebecQuebecCanada
- CHU de Québec – Université Laval Research CenterQuébecQuébecCanada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN)Centre intégré universitaire de santé et de services sociaux du Saguenay‐Lac‐Saint‐JeanSaguenayQuebecCanada
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris)Centre Intégré Universitaire de Santé et de Services Sociaux Capitale‐NationaleQuébecQuebecCanada
| | - Nicolas A. Dumont
- CHU Sainte‐Justine Research CenterMontrealQuebecCanada
- School of rehabilitationFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| |
Collapse
|
48
|
Ma Y, Erb ML, Moore DJ. Aging, cellular senescence and Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2025; 15:239-254. [PMID: 39973488 DOI: 10.1177/1877718x251316552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, affecting 1-2% of people over age 65. The risk of developing PD dramatically increases with advanced age, indicating that aging is likely a driving factor in PD neuropathogenesis. Several age-associated biological changes are also hallmarks of PD neuropathology, including mitochondrial dysfunction, oxidative stress, and neuroinflammation. Accumulation of senescent cells is an important feature of aging that contributes to age-related diseases. How age-related cellular senescence affects brain health and whether this phenomenon contributes to neuropathogenesis in PD is not yet fully understood. In this review, we highlight hallmarks of aging, including mitochondrial dysfunction, loss of proteostasis, genomic instability and telomere attrition in relation to well established PD neuropathological pathways. We then discuss the hallmarks of cellular senescence in the context of neuroscience and review studies that directly examine cellular senescence in PD. Studying senescence in PD presents challenges and holds promise for advancing our understanding of disease mechanisms, which could contribute to the development of effective disease-modifying therapeutics. Targeting senescent cells or modulating the senescence-associated secretory phenotype (SASP) in PD requires a comprehensive understanding of the complex relationship between PD pathogenesis and cellular senescence.
Collapse
Affiliation(s)
- Yue Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Madalynn L Erb
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
49
|
Thau H, Gerjol BP, Hahn K, von Gudenberg RW, Knoedler L, Stallcup K, Emmert MY, Buhl T, Wyles SP, Tchkonia T, Tullius SG, Iske J. Senescence as a molecular target in skin aging and disease. Ageing Res Rev 2025; 105:102686. [PMID: 39929368 DOI: 10.1016/j.arr.2025.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Skin aging represents a multifactorial process influenced by both intrinsic and extrinsic factors, collectively known as the skin exposome. Cellular senescence, characterized by stable cell cycle arrest and secretion of pro-inflammatory molecules, has been implicated as a key driver of physiological and pathological skin aging. Increasing evidence points towards the role of senescence in a variety of dermatological diseases, where the accumulation of senescent cells in the epidermis and dermis exacerbates disease progression. Emerging therapeutic strategies such as senolytics and senomorphics offer promising avenues to target senescent cells and mitigate their deleterious effects, providing potential treatments for both skin aging and senescence-associated skin diseases. This review explores the molecular mechanisms of cellular senescence and its role in promoting age-related skin changes and pathologies, while compiling the observed effects of senotherapeutics in the skin and discussing the translational relevance.
Collapse
Affiliation(s)
- Henriette Thau
- Van Cleve Cardiac Regenerative Medicine Program Mayo Clinic, Rochester, Minesota, USA; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bastian P Gerjol
- Department of Internal Medicine, Klinik Hirslanden, Zurich, Switzerland
| | - Katharina Hahn
- Department of Dermatology, Venereology and Allergology, Göttingen University Medical Center, Göttingen, Germany
| | - Rosalie Wolff von Gudenberg
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leonard Knoedler
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin, Germany
| | - Kenneth Stallcup
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, Göttingen University Medical Center, Göttingen, Germany
| | | | - Tamar Tchkonia
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
50
|
Pavan-Guimaraes J, Devos L, Lascaris B, de Meijer VE, Monbaliu D, Jochmans I, Pulitano C, Porte RJ, Martins PN. Long-Term Liver Machine Perfusion Preservation: A Review of Recent Advances, Benefits and Logistics. Artif Organs 2025; 49:339-352. [PMID: 39895504 DOI: 10.1111/aor.14941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND The global shortage of suitable donor livers for transplantation has prompted efforts to expand the donor pool by using extended criteria donors. Machine preservation technology has shown promise in optimizing graft preservation and improving logistics. Additionally, it holds potential for organ repair, regeneration, therapeutic applications during extended preservation periods, and enhancing organ allocation. METHODS We conducted a comprehensive literature review using PubMed, Embase, and Web of Science databases. All studies published between January 1, 2022, and February 7, 2024, that described machine perfusion preservation of livers for more than 24 h were eligible for inclusion. The findings were synthesized in a narrative review format to highlight key benefits and advancements. RESULTS We identified eleven studies from multiple research groups, employing various techniques, devices, and preservation durations. Perfusion durations ranged from 1 to 13 days, with notable variations in protocols for long-term preservation beyond 24 h. Viability was assessed during perfusion only. No livers were transplanted. Among the reviewed studies, the introduction of a dialysis system emerged as the most effective strategy for managing waste accumulation during long-term liver perfusion. Differences were also observed in hemodynamics, oxygenation, organ chambers, supplemental regimens, and glycemic control. CONCLUSION Over the past two years, substantial progress has been made in refining protocols for long-term liver machine perfusion, with significant advancements in waste management, enabling successful multi-day perfusions. While these developments are promising, further research is necessary to standardize and optimize long-term perfusion protocols, establishing a reliable platform for both organ preservation and therapeutic applications.
Collapse
Affiliation(s)
| | - Lene Devos
- Department of Microbiology, Immunology and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
| | - Bianca Lascaris
- Section of HPB Surgery and Liver Transplantation, UMCG Comprehensive Transplant Center, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Section of HPB Surgery and Liver Transplantation, UMCG Comprehensive Transplant Center, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Ina Jochmans
- Department of Microbiology, Immunology and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Carlo Pulitano
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Robert J Porte
- Division of HPB and Transplant Surgery, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paulo N Martins
- Department of Surgery, Transplant Institute, University of Oklahoma, Oklahoma City, Oklahoma, USA
| |
Collapse
|