1
|
Minosse S, Picchi E, Conti A, di Giuliano F, di Ciò F, Sarmati L, Teti E, de Santis S, Andreoni M, Floris R, Guerrisi M, Garaci F, Toschi N. Multishell diffusion MRI reveals whole-brain white matter changes in HIV. Hum Brain Mapp 2023; 44:5113-5124. [PMID: 37647214 PMCID: PMC10502617 DOI: 10.1002/hbm.26448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) have been previously used to explore white matter related to human immunodeficiency virus (HIV) infection. While DTI and DKI suffer from low specificity, the Combined Hindered and Restricted Model of Diffusion (CHARMED) provides additional microstructural specificity. We used these three models to evaluate microstructural differences between 35 HIV-positive patients without neurological impairment and 20 healthy controls who underwent diffusion-weighted imaging using three b-values. While significant group effects were found in all diffusion metrics, CHARMED and DKI analyses uncovered wider involvement (80% vs. 20%) of all white matter tracts in HIV infection compared with DTI. In restricted fraction (FR) analysis, we found significant differences in the left corticospinal tract, middle cerebellar peduncle, right inferior cerebellar peduncle, right corticospinal tract, splenium of the corpus callosum, left superior cerebellar peduncle, left superior cerebellar peduncle, pontine crossing tract, left posterior limb of the internal capsule, and left/right medial lemniscus. These are involved in language, motor, equilibrium, behavior, and proprioception, supporting the functional integration that is frequently impaired in HIV-positivity. Additionally, we employed a machine learning algorithm (XGBoost) to discriminate HIV-positive patients from healthy controls using DTI and CHARMED metrics on an ROIwise basis, and unique contributions to this discrimination were examined using Shapley Explanation values. The CHARMED and DKI estimates produced the best performance. Our results suggest that biophysical multishell imaging, combining additional sensitivity and built-in specificity, provides further information about the brain microstructural changes in multimodal areas involved in attentive, emotional and memory networks often impaired in HIV patients.
Collapse
Affiliation(s)
- Silvia Minosse
- Diagnostic Imaging UnitUniversity Hospital Rome Tor VergataRomeItaly
| | - Eliseo Picchi
- Diagnostic Imaging UnitUniversity Hospital Rome Tor VergataRomeItaly
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataRomeItaly
| | - Allegra Conti
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataRomeItaly
| | - Francesca di Giuliano
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataRomeItaly
- Neuroradiology UnitUniversity Hospital of Rome Tor VergataRomeItaly
| | - Francesco di Ciò
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataRomeItaly
| | - Loredana Sarmati
- Clinical Infectious Diseases UnitUniversity Hospital of Rome Tor VergataRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - Elisabetta Teti
- Clinical Infectious Diseases UnitUniversity Hospital of Rome Tor VergataRomeItaly
| | - Silvia de Santis
- Instituto de NeurocienciasConsejo Superior de Investigaciones Científicas and Universidad Miguel HernándezSant Joan d'AlacantSpain
| | - Massimo Andreoni
- Clinical Infectious Diseases UnitUniversity Hospital of Rome Tor VergataRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - Roberto Floris
- Diagnostic Imaging UnitUniversity Hospital Rome Tor VergataRomeItaly
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataRomeItaly
| | - Maria Guerrisi
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataRomeItaly
| | - Francesco Garaci
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataRomeItaly
- Neuroradiology UnitUniversity Hospital of Rome Tor VergataRomeItaly
- IRCSS San Raffaele CassinoFrosinoneItaly
| | - Nicola Toschi
- Neuroradiology UnitUniversity Hospital of Rome Tor VergataRomeItaly
- Athinoula A. Martinos Center for Biomedical ImagingHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Yoshihara Y, Kato T, Watanabe D, Fukumoto M, Wada K, Oishi N, Nakakura T, Kuriyama K, Shirasaka T, Murai T. Altered white matter microstructure and neurocognitive function of HIV-infected patients with low nadir CD4. J Neurovirol 2022; 28:355-366. [PMID: 35776340 DOI: 10.1007/s13365-022-01053-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 10/17/2022]
Abstract
Altered white matter microstructure has been reported repeatedly using diffusion tensor imaging (DTI) in HIV-associated neurocognitive disorders. However, the associations between neurocognitive deficits and impaired white matter remains obscure due to frequent physical and psychiatric comorbidities in the patients. Severe immune suppression, reflected by low nadir CD4 T-cell counts, is reported to be associated with the neurocognitive deficits in the patients. In the present study, we examined white matter integrity using DTI and tract-based spatial statistics (TBSS), and neurocognitive functions using a battery of tests, in 15 HIV-infected patients with low nadir CD4, 16 HIV-infected patients with high nadir CD4, and 33 age- and sex-matched healthy controls. As DTI measures, we analyzed fractional anisotropy (FA) and mean diffusivity (MD). In addition, we investigated the correlation between white matter impairments and neurocognitive deficits. Among the three participant groups, the patients with low nadir CD4 showed significantly lower performance in processing speed and motor skills, and had significantly increased MD in widespread regions of white matter in both hemispheres. In the patients with low nadir CD4, there was a significant negative correlation between motor skills and MD in the right motor tracts, as well as in the corpus callosum. In summary, this study may provide white matter correlates of neurocognitive deficits in HIV-infected patients with past severe immune suppression as legacy effects.
Collapse
Affiliation(s)
- Yujiro Yoshihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Tadatsugu Kato
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Dai Watanabe
- AIDS Medical Center, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Masaji Fukumoto
- Department of Radiology, National Hospital Organization Higashi-Ohmi General Medical Center, Shiga, Japan
| | - Keiko Wada
- Department of Radiology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Nakakura
- Department of Psychology, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Keiko Kuriyama
- Department of Radiology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Takuma Shirasaka
- AIDS Medical Center, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
3
|
Minosse S, Picchi E, Giuliano FD, di Cio F, Pistolese CA, Sarmati L, Teti E, Andreoni M, Floris R, Guerrisi M, Garaci F, Toschi N. Compartmental models for diffusion weighted MRI reveal widespread brain changes in HIV-infected patients. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3834-3837. [PMID: 34892070 DOI: 10.1109/embc46164.2021.9629510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diffusion tensor imaging (DTI) has been used to explore changes in the brain of subjects with human immunodeficiency virus (HIV) infection. However, DTI notoriously suffers from low specificity. Neurite orientation dispersion and density imaging (NODDI) is a compartmental model able to provide specific microstructural information with additional sensitivity/specificity. In this study we use both the NODDI and the DTI models to evaluate microstructural differences between 35 HIV-positive patients and 20 healthy controls. Diffusion-weighted imaging was acquired using three b-values (0, 1000 and 2500 s/mm2). Both DTI and NODDI models were fitted to the data, obtaining estimates for fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), neurite density index (NDI) and orientation dispersion index (ODI), after which we performed group comparisons using Tract-based spatial statistics (TBSS). While significant group effects were found in in FA, MD, RD, AD and NDI, NDI analysis uncovered a much wider involvement of brain tissue in HIV infection as compared to DTI. In region-of interest (ROI)-based analysis, NDI estimates from the right corticospinal tract produced excellent performance in discriminating the two groups (AUC = 0.974, sensitivity = 90%; specificity =97%).
Collapse
|
4
|
Di Giuliano F, Minosse S, Picchi E, Ferrazzoli V, Da Ros V, Muto M, Pistolese CA, Garaci F, Floris R. Qualitative and quantitative analysis of 3D T1 Silent imaging. Radiol Med 2021; 126:1207-1215. [PMID: 34131844 DOI: 10.1007/s11547-021-01380-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To compare brain magnetic resonance imaging (MRI) using T1 3D Silent and fast T1 3D Gradient-Echo (GRE) BRAin VOlume (known as BRAVO) sequences. The primary aim is to assess the quantitative and qualitative analysis of Silent and BRAVO images by the measurement of the contrast (C), the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). The second aim is to estimate the subjective sound levels and the specific absorption rate (SAR). METHODS Twenty-two subjects had T1 3D Silent and T1 3D BRAVO sequences added to the standard MR examination. The qualitative analysis of the two sequences was performed by two radiologists independently. The quantitative analysis was performed by placing regions of interest on the cerebrospinal fluid, on the white and grey matter. The C, the CNR and the SNR were calculated for each sequence. After each T1-3D sequence, subjects gave a score rating to evaluate the acoustic noise. Finally, the SAR was evaluated by the digital imaging and communications in medicine (DICOM) tags. RESULTS The image quality scores obtained by the two radiologists were higher for BRAVO compared to the Silent. However, qualitatively, the Silent images were similar to BRAVO for diagnostic use. Quantitatively, CNR for GM-CSF was comparable in the two sequences and SNR in CSF was higher in Silent than BRAVO. The acoustic noise of Silent sequence was statistically lower compared with BRAVO. The maximum SAR measured was 1.4 W/kg. CONCLUSIONS 3D T1 Silent can be a valid alternative technique to conventional BRAVO to reduce the acoustic noise preserving the diagnostic accuracy. However, radiologists preferred the conventional sequence to Silent.
Collapse
Affiliation(s)
- Francesca Di Giuliano
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy
| | - Silvia Minosse
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy.
| | - Eliseo Picchi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Valentina Ferrazzoli
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy
| | - Valerio Da Ros
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy
| | - Massimo Muto
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80100, Naples, Italy
| | - Chiara Adriana Pistolese
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Francesco Garaci
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy
- San Raffaele Cassino, Cassino, Italy
| | - Roberto Floris
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| |
Collapse
|
5
|
Minosse S, Picchi E, Di Giuliano F, Sarmati L, Teti E, Pistolese CA, Lanzafame S, Di Ciò F, Guerrisi M, Andreoni M, Floris R, Toschi N, Garaci F. Functional brain network reorganization in HIV infection. J Neuroimaging 2021; 31:796-808. [PMID: 33900655 DOI: 10.1111/jon.12861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE To investigate the reorganization of the central nervous system provided by resting state-functional MRI (rs-fMRI), graph-theoretical analysis, and a newly developed functional brain network disruption index in patients with human immunodeficiency virus (HIV) infection. METHODS Forty HIV-positive patients without neurological impairment and 20 age- and sex-matched healthy controls underwent rs-fMRI at 3T; blood sampling was obtained the same day to evaluate biochemical variables (absolute, relative, and nadir CD4 T-lymphocytes value and plasmatic HIV-RNA). From fMRI data, disruption indices, as well as global and local graph theoretical measures, were estimated and examined for group differences (HIV vs. controls) as well as for associations with biochemical variables (HIV only). Finally, all data (global and local graph-theoretical measures, disruption indices, and biochemical variables) were tested for putative differences across three patient groups based on the duration of combined antiretroviral therapy (cART). RESULTS Brain function of HIV patients appeared to be deeply reorganized as compared to normal controls. The disruption index showed significant negative association with relative CD4 values, and a positive significant association between plasmatic HIV-RNA and local graph-theoretical metrics in the left lingual gyrus and the right lobule IV and V of right cerebellar hemisphere was also observed. Finally, a differential distribution of HIV clinical biomarkers and several brain metrics was observed across cART duration groups. CONCLUSION Our study demonstrates that rs-fMRI combined with advanced graph theoretical analysis and disruption indices is able to detect early and subtle functional changes of brain networks in HIV patients.
Collapse
Affiliation(s)
- Silvia Minosse
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Eliseo Picchi
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Di Giuliano
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Loredana Sarmati
- Clinical Infectious Diseases, Tor Vergata University, Rome, Italy
| | - Elisabetta Teti
- Clinical Infectious Diseases, Tor Vergata University, Rome, Italy
| | - Chiara Adriana Pistolese
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Simona Lanzafame
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Ciò
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Guerrisi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Massimo Andreoni
- Clinical Infectious Diseases, Tor Vergata University, Rome, Italy
| | - Roberto Floris
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesco Garaci
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,San Raffaele Cassino, Frosinone, Italy
| |
Collapse
|
6
|
Nucci C, Garaci F, Altobelli S, Di Ciò F, Martucci A, Aiello F, Lanzafame S, Di Giuliano F, Picchi E, Minosse S, Cesareo M, Guerrisi MG, Floris R, Passamonti L, Toschi N. Diffusional Kurtosis Imaging of White Matter Degeneration in Glaucoma. J Clin Med 2020; 9:jcm9103122. [PMID: 32992559 PMCID: PMC7600134 DOI: 10.3390/jcm9103122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is an optic neuropathy characterized by death of retinal ganglion cells and loss of their axons, progressively leading to blindness. Recently, glaucoma has been conceptualized as a more diffuse neurodegenerative disorder involving the optic nerve and also the entire brain. Consistently, previous studies have used a variety of magnetic resonance imaging (MRI) techniques and described widespread changes in the grey and white matter of patients. Diffusion kurtosis imaging (DKI) provides additional information as compared with diffusion tensor imaging (DTI), and consistently provides higher sensitivity to early microstructural white matter modification. In this study, we employ DKI to evaluate differences among healthy controls and a mixed population of primary open angle glaucoma patients ranging from stage I to V according to Hodapp–Parrish–Anderson visual field impairment classification. To this end, a cohort of patients affected by primary open angle glaucoma (n = 23) and a group of healthy volunteers (n = 15) were prospectively enrolled and underwent an ophthalmological evaluation followed by magnetic resonance imaging (MRI) using a 3T MR scanner. After estimating both DTI indices, whole-brain, voxel-wise statistical comparisons were performed in white matter using Tract-Based Spatial Statistics (TBSS). We found widespread differences in several white matter tracts in patients with glaucoma relative to controls in several metrics (mean kurtosis, kurtosis anisotropy, radial kurtosis, and fractional anisotropy) which involved localization well beyond the visual pathways, and involved cognitive, motor, face recognition, and orientation functions amongst others. Our findings lend further support to a causal brain involvement in glaucoma and offer alternative explanations for a number of multidomain impairments often observed in glaucoma patients.
Collapse
Affiliation(s)
- Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (F.A.); (M.C.)
- Correspondence: (C.N.); (F.G.); (L.P.); Tel.: +39-06-7259-6145 (C.N.); +39-06-2090-2471 (F.G.); +44-01223-330293 (L.P.)
| | - Francesco Garaci
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
- San Raffaele Cassino, 03043 Frosinone, Italy
- Correspondence: (C.N.); (F.G.); (L.P.); Tel.: +39-06-7259-6145 (C.N.); +39-06-2090-2471 (F.G.); +44-01223-330293 (L.P.)
| | - Simone Altobelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.A.); (F.D.C.); (S.L.); (E.P.); (S.M.); (M.G.G.); (N.T.)
| | - Francesco Di Ciò
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.A.); (F.D.C.); (S.L.); (E.P.); (S.M.); (M.G.G.); (N.T.)
| | - Alessio Martucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (F.A.); (M.C.)
| | - Francesco Aiello
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (F.A.); (M.C.)
| | - Simona Lanzafame
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.A.); (F.D.C.); (S.L.); (E.P.); (S.M.); (M.G.G.); (N.T.)
| | - Francesca Di Giuliano
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Eliseo Picchi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.A.); (F.D.C.); (S.L.); (E.P.); (S.M.); (M.G.G.); (N.T.)
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Silvia Minosse
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.A.); (F.D.C.); (S.L.); (E.P.); (S.M.); (M.G.G.); (N.T.)
| | - Massimo Cesareo
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (F.A.); (M.C.)
| | - Maria Giovanna Guerrisi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.A.); (F.D.C.); (S.L.); (E.P.); (S.M.); (M.G.G.); (N.T.)
| | - Roberto Floris
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, 20090 Milano, Italy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: (C.N.); (F.G.); (L.P.); Tel.: +39-06-7259-6145 (C.N.); +39-06-2090-2471 (F.G.); +44-01223-330293 (L.P.)
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.A.); (F.D.C.); (S.L.); (E.P.); (S.M.); (M.G.G.); (N.T.)
- Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, 149 13th Street, Boston, MA 02129, USA
| |
Collapse
|
7
|
Minosse S, Picchi E, Giuliano FD, Lanzafame S, Manenti G, Pistolese CA, Sarmati L, Teti E, Andreoni M, Floris R, Guerrisi M, Garaci F, Toschi N. Disruption of brain network organization in patients with human immunodeficiency virus (HIV) infection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:1726-1729. [PMID: 33018330 DOI: 10.1109/embc44109.2020.9176449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In 2019, approximately 38 million people were living with human immunodeficiency virus (HIV). Combined antiretroviral therapy (cART) has determined a change in the course of HIV infection, transforming it into a chronic condition which results in cumulative exposure to antiretroviral drugs, inflammatory effects and aging. Relatedly, at least one quarter of HIV-infected patients suffer from cognitive, motor and behavioral disorder, globally known as HIV-associated neurocognitive disorders (HAND). In this context, objective, neuroimaging-based biomarkers are therefore highly desirable in order to detect, quantify and monitor HAND in all disease stages. In this study, we employed functional MRI in conjunction with graph-theoretical analysis as well as a newly developed functional brain network disruption index to assess a putative functional reorganization in HIV positive patients. We found that brain function of HIV patients is deeply reorganized as compared to normal controls. Interestingly, the regions in which we found reorganized hubs are integrated into neuronal networks involved in working memory, motor and executive functions often altered in patients with HAND. Overall, our study demonstrates that rs-fMRI combined with advanced graph theoretical analysis and disruption indices is able to detect early, subtle functional changes of brain networks in HIV patients before structural changes become evident.
Collapse
|