1
|
Wu F, Liang T, Liu Y, Wang C, Sun Y, Wang B. Effects of perioperative hydrogen inhalation on brain edema and prognosis in patients with glioma: a single-center, randomized controlled study. Front Neurol 2024; 15:1413904. [PMID: 39099781 PMCID: PMC11294077 DOI: 10.3389/fneur.2024.1413904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Brain edema is a life-threatening complication that occurs after glioma surgery. There are no noninvasive and specific treatment methods for brain edema. Hydrogen is an anti-inflammatory and antioxidant gas that has demonstrated therapeutic and preventative effects on several diseases, particularly in the nervous system. This study aimed to determine the therapeutic effects of hydrogen administration on brain edema following glioma surgery and elucidate its mechanism. Methods A single-center, randomized controlled clinical trial of hydrogen inhalation was conducted (China Clinical Trial Registry [ChiCTR-2300074362]). Participants in hydrogen (H) group that inhaled hydrogen experienced quicker alleviation of postoperative brain edema compared with participants in control (C) group that inhaled oxygen. Results The volume of brain edema before discharge was significantly lower in the H group (p < 0.05). Additionally, the regression rate of brain edema was higher in the H group than in the C group, which was statistically significant (p < 0.05). Furthermore, 3 days after surgery, the H group had longer total sleep duration, improved sleep efficiency, shorter sleep latency, and lower numerical rating scale (NRS) scores (p < 0.05). Discussion In conclusion, hydrogen/oxygen inhalation effectively reduced postoperative brain edema in glioma patients. Further research is necessary to understand the underlying mechanisms of hydrogen's therapeutic effects. Hydrogen is expected to become a new target for future adjuvant therapy for brain edema.
Collapse
Affiliation(s)
- Fan Wu
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tao Liang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chenhui Wang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yongxing Sun
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Baoguo Wang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Konar S, Shukla D, Indira Devi B, Christopher R, S N, Puybasset L, Chakrabarti D, Sundaravadivel P, Nirmal S. Role of substance P in cerebral edema and association with an estimated specific gravity of the brain and an outcome prediction in post-traumatic cerebral edema. World Neurosurg X 2024; 23:100355. [PMID: 38516024 PMCID: PMC10955688 DOI: 10.1016/j.wnsx.2024.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Purpose The study aims to evaluate the role of substance P in cerebral edema and outcomes associated with acute TBI. Method Patients with acute TBI who presented within 6 h and a CT scan showed predominantly cerebral edema were included in the study. Substance P level was assessed from a serum sample collected within 6 h of trauma. We also evaluated the brain-specific gravity using the Brain View software. Result A total of 160 (128 male) patients were recruited. The median serum substance P concentration was 167.89 (IQR: 101.09-238.2). Substance P concentration was high in the early hours after trauma (p = 0.001). The median specific gravity of the entire brain was 1.04. Patients with a low Glasgow coma scale (GCS) at admission had a high concentration of the substance P. In the univariate analysis, low GCS, elevated serum concentrations of substance P level, high Rotterdam grade, high cerebral edema grade, a high international normalized ratio value, and high blood sugar levels were associated with poor outcomes at six months. In logistic regression analysis, low GCS at admission, high cerebral edema grade, and elevated blood sugar level were strongly associated with poor outcomes at six months. The area under the receiver operating characteristic curve was 0.884 (0.826-0.941). Conclusion Serum substance P is strongly associated with the severity of cerebral edema after TBI. However, brain-specific gravity does not directly correlate with posttraumatic cerebral edema severity. Serum substance P does not influence the clinical outcome of traumatic brain injury.
Collapse
Affiliation(s)
- Subhas Konar
- Dept. of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Dhaval Shukla
- Dept. of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - B. Indira Devi
- Dept. of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rita Christopher
- Lab Director, Integrative Medical Research, PES University Institute of Medical Sciences and Research (PESUIMSR), Bengaluru 560100, India
| | - Nishanth S
- Dept. of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Louis Puybasset
- Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Laboratoire D'imagerie Biomédicale LIB,Paris, France
| | | | - P. Sundaravadivel
- Dept. of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shubham Nirmal
- Dept. of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
3
|
Paracino R, De Domenico P, Rienzo ADI, Dobran M. Radiologic and Blood Markers Predicting Long-Term Neurologic Outcome Following Decompressive Craniectomy for Malignant Ischemic Stroke: A Preliminary Single-Center Study. J Neurol Surg A Cent Eur Neurosurg 2024. [PMID: 38657675 DOI: 10.1055/a-2312-9448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
BACKGROUND Malignant ischemic stroke (MIS) is defined by progressive cerebral edema leading to increased intracranial pressure (ICP), compression of neural structures, and, eventually, death. Decompressive craniectomy (DC) has been advocated as a lifesaving procedure in the management of patients with MIS. This study aims to identify pre- and postoperative predictive variables of neurologic outcomes in patients undergoing DC for MIS. METHODS We conducted a retrospective study of patients undergoing DC in a single center from April 2016 to April 2020. Preoperative workup included baseline clinical status, laboratory data, and brain computed tomography (CT). The primary outcome was the 6-month modified Rankin score (mRS). The secondary outcome was the 30-day mortality. RESULTS During data capture, a total of 58 patients fulfilled the criteria for MIS, of which 22 underwent DC for medically refractory increased ICP and were included in the present analysis. The overall median age was 58.5 years. An immediate (24 hour) postoperative extended Glasgow Outcome Scale (GOSE) score ≥5 was associated with a good 6-month mRS (1-3; p = 0.004). Similarly, low postoperative neutrophils (p = 0.002), low lymphocytes (p = 0.004), decreased neutrophil-to-lymphocyte ratio (NLR; p = 0.02), and decreased platelet-to-lymphocytes ratio (PLR; p = 0.03) were associated with good neurologic outcomes. Preoperative variables independently associated with worsened 6-month mRS were the following: increased age (odds ratio [OR]: 1.10; 95% confidence interval [CI]: 1.01-1.20; p = 0.02), increased National Institutes of Health Stroke Scale (NIHSS) score (OR: 7.8; 95% CI: 2.5-12.5; p = 0.035), Glasgow Coma Scale (GCS) score less than 8 at the time of neurosurgical referral (OR: 21.63; 95% CI: 1.42-328; p = 0.02), and increased partial thromboplastin time (PTT) before surgery (OR: 2.11; 95% CI: 1.11-4; p = 0.02). Decreased postoperative lymphocytes confirmed a protective role against worsened functional outcomes (OR: 0.01; 95% CI: 0.01-0.4; p = 0.02). Decreased postoperative lymphocyte count was associated with a protective role against increased mRS (OR: 0.01; 95% CI: 0.01-0.4; p = 0.02). The occurrence of hydrocephalus at the postoperative CT scan was associated with 30-day mortality (p = 0.005), while the persistence of postoperative compression of the ambient and crural cistern showed a trend towards higher mortality (p = 0.07). CONCLUSIONS This study reports that patients undergoing DC for MIS showing decreased postoperative blood inflammatory markers achieved better 6-month neurologic outcomes than patients with increased inflammatory markers. Similarly, poor NIHSS score, poor GCS score, increased age, and larger PTT values at the time of surgery were independent predictors of poor outcomes. Moreover, the persistence of postoperative compression of basal cisterns and the occurrence of hydrocephalus are associated with 30-day mortality.
Collapse
Affiliation(s)
- Riccardo Paracino
- Department of Neurosurgery, Azienda Ospedaliera di Perugia, Perugia, Italy
| | | | | | - Mauro Dobran
- Department of Neurosurgery, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
4
|
Chen DY, Wu PF, Zhu XY, Zhao WB, Shao SF, Xie JR, Yuan DF, Zhang L, Li K, Wang SN, Zhao H. Risk factors and predictive model of cerebral edema after road traffic accidents-related traumatic brain injury. Chin J Traumatol 2024; 27:153-162. [PMID: 38458896 PMCID: PMC11138350 DOI: 10.1016/j.cjtee.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 03/10/2024] Open
Abstract
PURPOSE Cerebral edema (CE) is the main secondary injury following traumatic brain injury (TBI) caused by road traffic accidents (RTAs). It is challenging to be predicted timely. In this study, we aimed to develop a prediction model for CE by identifying its risk factors and comparing the timing of edema occurrence in TBI patients with varying levels of injuries. METHODS This case-control study included 218 patients with TBI caused by RTAs. The cohort was divided into CE and non-CE groups, according to CT results within 7 days. Demographic data, imaging data, and clinical data were collected and analyzed. Quantitative variables that follow normal distribution were presented as mean ± standard deviation, those that do not follow normal distribution were presented as median (Q1, Q3). Categorical variables were expressed as percentages. The Chi-square test and logistic regression analysis were used to identify risk factors for CE. Logistic curve fitting was performed to predict the time to secondary CE in TBI patients with different levels of injuries. The efficacy of the model was evaluated using the receiver operator characteristic curve. RESULTS According to the study, almost half (47.3%) of the patients were found to have CE. The risk factors associated with CE were bilateral frontal lobe contusion, unilateral frontal lobe contusion, cerebral contusion, subarachnoid hemorrhage, and abbreviated injury scale (AIS). The odds ratio values for these factors were 7.27 (95% confidence interval (CI): 2.08 - 25.42, p = 0.002), 2.85 (95% CI: 1.11 - 7.31, p = 0.030), 2.62 (95% CI: 1.12 - 6.13, p = 0.027), 2.44 (95% CI: 1.25 - 4.76, p = 0.009), and 1.5 (95% CI: 1.10 - 2.04, p = 0.009), respectively. We also observed that patients with mild/moderate TBI (AIS ≤ 3) had a 50% probability of developing CE 19.7 h after injury (χ2 = 13.82, adjusted R2 = 0.51), while patients with severe TBI (AIS > 3) developed CE after 12.5 h (χ2 = 18.48, adjusted R2 = 0.54). Finally, we conducted a receiver operator characteristic curve analysis of CE time, which showed an area under the curve of 0.744 and 0.672 for severe and mild/moderate TBI, respectively. CONCLUSION Our study found that the onset of CE in individuals with TBI resulting from RTAs was correlated with the severity of the injury. Specifically, those with more severe injuries experienced an earlier onset of CE. These findings suggest that there is a critical time window for clinical intervention in cases of CE secondary to TBI.
Collapse
Affiliation(s)
- Di-You Chen
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China; Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Peng-Fei Wu
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Xi-Yan Zhu
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wen-Bing Zhao
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shi-Feng Shao
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing-Ru Xie
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dan-Feng Yuan
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liang Zhang
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kui Li
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shu-Nan Wang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Hui Zhao
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
5
|
Qu Y, Yang Y, Sun X, Ma HY, Zhang P, Abuduxukuer R, Zhu HJ, Liu J, Zhang PD, Guo ZN. Heart Rate Variability in Patients with Spontaneous Intracerebral Hemorrhage and its Relationship with Clinical Outcomes. Neurocrit Care 2024; 40:282-291. [PMID: 36991176 DOI: 10.1007/s12028-023-01704-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/22/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Although abnormal heart rate variability (HRV) is frequently observed in patients with spontaneous intracerebral hemorrhage (ICH), its time course and presentation of different indices remain unclear, and few studies have focused on its association with clinical outcomes. METHODS We prospectively recruited consecutive patients with spontaneous ICH between June 2014 and June 2021. HRV was evaluated twice during hospitalization (within 7 days and 10-14 days after stroke). Time and frequency domain indices were calculated. A modified Rankin Scale score ≥ 3 at 3 months was defined as a poor outcome. RESULTS Finally, 122 patients with ICH and 122 age- and sex-matched volunteers were included. Compared with controls, time domain and absolute frequency domain HRV parameters (total power, low frequency [LF], and high frequency [HF]) in the ICH group were significantly decreased within 7 days and 10-14 days. For relative values, normalized LF (LF%) and LF/HF were significantly higher, whereas normalized HF (HF%) was significantly lower, in the patient group than in the control group. Furthermore, LF% and HF% measured at 10-14 days were independently associated with 3-month outcomes. CONCLUSIONS HRV values were impaired significantly within 14 days after ICH. Furthermore, HRV indices measured 10-14 days after ICH were independently associated with 3-month outcomes.
Collapse
Affiliation(s)
- Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Hong-Yin Ma
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Reziya Abuduxukuer
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pan-Deng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Du W, Yang J, Lou Y, You J, Wang Q. Relationship between baseline bicarbonate and 30-day mortality in patients with non-traumatic subarachnoid hemorrhage. Front Neurol 2024; 14:1310327. [PMID: 38234976 PMCID: PMC10793108 DOI: 10.3389/fneur.2023.1310327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
Objective This study aimed to explore the relationship between baseline bicarbonate levels and 30-day mortality in individuals with non-traumatic subarachnoid hemorrhage (SAH). Methods Patients with non-traumatic SAH were chosen from the Medical Information Mart for Intensive Care (MIMIC)-IV database. The relationship between baseline bicarbonate and 30-day mortality was examined using Cox regression models. Restricted cubic splines were used to test the hypothesis that there was an association between bicarbonate and mortality. With the use of Kaplan-Meier survival curve analysis, we looked deeper into the validity of these correlations. To find subgroups with differences, interaction tests were utilized. Results This retrospective cohort study consisted of 521 participants in total. Bicarbonate had a negative association with death at 30 days (HR = 0.93, 95%CI: 0.88-0.98, p = 0.004). Next, we divided bicarbonate into quartile groups. In comparison to the reference group Q1 (20 mEq/L), groups Q3 (23-25 mEq/L) and Q4 (26 mEq/L) had adjusted HR values of 0.47 (95%CI: 0.27-0.82, p = 0.007) and 0.56 (95%CI: 0.31-0.99, p = 0.047). No definite conclusions can be derived from this study, since there is no obvious curve link between baseline bicarbonate and 30-day mortality. Patients' 30-day mortality increased statistically significantly (p < 0.001, K-M analysis) in patients with low bicarbonate levels. The relationship between bicarbonate and 30-day mortality remained consistent in the stratified analysis, with no observed interactions. Conclusion Finally, 30-day mortality was negatively associated with baseline bicarbonate levels. Patients with non-traumatic SAH are more at risk of mortality if their bicarbonate levels are low.
Collapse
Affiliation(s)
- Wenyuan Du
- Department of Neurology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, Hebei, China
| | - Jingmian Yang
- Department of Neurology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, Hebei, China
| | - Yanfang Lou
- Department of Neurology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, Hebei, China
| | - Jiahua You
- Department of Neurology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, Hebei, China
| | - Qiang Wang
- Department of Cardiology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Li M, Zhu R, Li G, Yin S, Zeng L, Bai Z, Chen J, Jiang B, Li L, Wu Y. Point-of-care testing for cerebral edema types based on symmetric cancellation near-field coupling phase shift and support vector machine. Biomed Eng Online 2023; 22:80. [PMID: 37582824 PMCID: PMC10428563 DOI: 10.1186/s12938-023-01145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Cerebral edema is an extremely common secondary disease in post-stroke. Point-of-care testing for cerebral edema types has important clinical significance for the precise management to prevent poor prognosis. Nevertheless, there has not been a fully accepted bedside testing method for that. METHODS A symmetric cancellation near-field coupling phase shift (NFCPS) monitoring system is established based on the symmetry of the left and right hemispheres and the fact that unilateral lesions do not affect healthy hemispheres. For exploring the feasibility of this system to reflect the occurrence and development of cerebral edema, 13 rabbits divided into experimental group (n = 8) and control group (n = 5) were performed 24-h NFCPS continuous monitoring experiments. After time difference offset and feature band averaging processing, the changing trend of NFCPS at the stages dominated by cytotoxic edema (CE) and vasogenic edema (VE), respectively, was analyzed. Furthermore, the features under the different time windows were extracted. Then, a discriminative model of cerebral edema types based on support vector machines (SVM) was established and performance of multiple feature combinations was compared. RESULTS The NFCPS monitoring outcomes of experimental group endured focal ischemia modeling by thrombin injection show a trend of first decreasing and then increasing, reaching the lowest value of - 35.05° at the 6th hour. Those of control group do not display obvious upward or downward trend and only fluctuate around the initial value with an average change of - 0.12°. Furthermore, four features under the 1-h and 2-h time windows were extracted. Based on the discriminative model of cerebral edema types, the classification accuracy of 1-h window is higher than 90% and the specificity is close to 1, which is almost the same as the performance of the 2-h window. CONCLUSION This study proves the feasibility of NFCPS technology combined with SVM to distinguish cerebral edema types in a short time, which is promised to become a new solution for immediate and precise management of dehydration therapy after ischemic stroke.
Collapse
Affiliation(s)
- Mingyan Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054 China
- College of Artificial Intelligence, Chongqing University of Technology, Chongqing, 401135 China
| | - Rui Zhu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054 China
| | - Gen Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054 China
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing, 400038 China
| | - Shengtong Yin
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054 China
| | - Lingxi Zeng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054 China
| | - Zelin Bai
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038 China
| | - Jingbo Chen
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038 China
| | - Bin Jiang
- College of Artificial Intelligence, Chongqing University of Technology, Chongqing, 401135 China
| | - Lihong Li
- College of Artificial Intelligence, Chongqing University of Technology, Chongqing, 401135 China
| | - Yu Wu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054 China
| |
Collapse
|
8
|
Wang C, Xing D, Zhou S, Fang F, Fu Y, Xu F. Electrical bioimpedance measurement and near-infrared spectroscopy in pediatric postoperative neurocritical care: a prospective observational study. Front Neurol 2023; 14:1190140. [PMID: 37416310 PMCID: PMC10322191 DOI: 10.3389/fneur.2023.1190140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Background To investigate the clinical significance of the disturbance coefficient (DC) and regional cerebral oxygen saturation (rSO2) as obtained through the use of electrical bioimpedance and near-infrared spectroscopy (NIRS) in pediatric neurocritical care. Participants and methods We enrolled 45 pediatric patients as the injury group and 70 healthy children as the control group. DC was derived from impedance analysis of 0.1 mA-50 kHz current via temporal electrodes. rSO2 was the percentage of oxyhemoglobin measured from reflected NIR light on the forehead. DC and rSO2 were obtained at 6, 12, 24, 48 and 72 h after surgery for the injury group and during the health screening clinic visit for the control group. We compared DC and rSO2 between the groups, their changes over time within the injury group and their correlation with intracranial pressure (ICP), cerebral perfusion pressure (CPP), Glasgow coma scale (GCS) score, Glasgow outcome scale (GOS) score, and their ability to diagnose postoperative cerebral edema and predict poor prognosis. Results DC and rSO2 were significantly lower in the injury group than in the control group. In the injury group, ICP increased over the monitoring period, while DC, CPP and rSO2 decreased. DC was negatively correlated with ICP and positively correlated with GCS score and GOS score. Additionally, lower DC values were observed in patients with signs of cerebral edema, with a DC value of 86.5 or below suggesting the presence of brain edema in patients aged 6-16 years. On the other hand, rSO2 was positively correlated with CPP, GCS score, and GOS score, with a value of 64.4% or below indicating a poor prognosis. Decreased CPP is an independent risk factor for decreased rSO2. Conclusion DC and rSO2 monitoring based on electrical bioimpedance and near-infrared spectroscopy not only reflect the degree of brain edema and oxygenation, but also reflect the severity of the disease and predict the prognosis of the patients. This approach offers a real-time, bedside, and accurate method for assessing brain function and detecting postoperative cerebral edema and poor prognosis.
Collapse
Affiliation(s)
- Chenhao Wang
- Department of Critical Care Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dianwei Xing
- Department of Critical Care Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shuoyan Zhou
- Department of Critical Care Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Fang Fang
- Department of Critical Care Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yueqiang Fu
- Department of Critical Care Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Feng Xu
- Department of Critical Care Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
9
|
Rezk MNN, Beshreda GM, Meshref DA, Abdelzaher WY, Batiha GES, Hafiz AA, Althumairy D, Aljarba NH, Welson NN. Hypoxia inducible factor-1α (HIF-1α) as an early predictor of acute hydrogen cyanamide (Dormex) poisoning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114847. [PMID: 37023646 DOI: 10.1016/j.ecoenv.2023.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Hydrogen cyanamide (Dormex) is a plant growth regulator that is classified as a highly toxic poison. There are no definite investigations to help in its diagnosis and follow-up. This study aimed to investigate the role of hypoxia-inducible factor-1α (HIF-1α) in the diagnosis, prediction, and follow-up of Dormex-intoxicated patients. Sixty subjects were equally divided into two groups: group A, the control group, and group B, the Dormex group. Clinical and laboratory evaluations, including arterial blood gases (ABG), prothrombin concentration (PC), the international normalized ratio (INR), a complete blood count (CBC), and HIF-1α, were done on admission. CBC and HIF-1α were repeated for group B 24 and 48 h after admission to track abnormalities. Group B also had brain computed tomography (CT). Patients with abnormal CT scans were referred for brain magnetic resonance imaging (MRI). Significant differences in levels of HB, WBCs, and platelets were also detected in group B up to 48 h after admission, as white blood cells (WBCs) rose with time and hemoglobin (HB) and platelets diminished. The results described a highly significant difference in HIF-1α between the groups, and it depended on the clinical condition; therefore, it can be used in the prediction and follow-up of patients up to 24 h after admission.
Collapse
Affiliation(s)
- Meriam N N Rezk
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Minia University, Minia 61511, Egypt.
| | - Gerges M Beshreda
- Department of Diagnostic Radiology, Faculty of Medicine, Minia University, Minia 61511, Egypt.
| | | | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| | - Amin A Hafiz
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al, Qura University, Saudi Arabia.
| | - Duaa Althumairy
- Department of Biological Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Nada H Aljarba
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical toxicology, Faculty of Medicine, Beni-Suef University, 62511 Beni Suef, Egypt.
| |
Collapse
|
10
|
Seblani M, Decherchi P, Brezun JM. Edema after CNS Trauma: A Focus on Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24087159. [PMID: 37108324 PMCID: PMC10138956 DOI: 10.3390/ijms24087159] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Edema after spinal cord injury (SCI) is one of the first observations after the primary injury and lasts for few days after trauma. It has serious consequences on the affected tissue and can aggravate the initial devastating condition. To date, the mechanisms of the water content increase after SCI are not fully understood. Edema formation results in a combination of interdependent factors related to mechanical damage after the initial trauma progressing, along with the subacute and acute phases of the secondary lesion. These factors include mechanical disruption and subsequent inflammatory permeabilization of the blood spinal cord barrier, increase in the capillary permeability, deregulation in the hydrostatic pressure, electrolyte-imbalanced membranes and water uptake in the cells. Previous research has attempted to characterize edema formation by focusing mainly on brain swelling. The purpose of this review is to summarize the current understanding of the differences in edema formation in the spinal cord and brain, and to highlight the importance of elucidating the specific mechanisms of edema formation after SCI. Additionally, it outlines findings on the spatiotemporal evolution of edema after spinal cord lesion and provides a general overview of prospective treatment strategies by focusing on insights to prevent edema formation after SCI.
Collapse
Affiliation(s)
- Mostafa Seblani
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, CEDEX 09, France
| | - Patrick Decherchi
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, CEDEX 09, France
| | - Jean-Michel Brezun
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, CEDEX 09, France
| |
Collapse
|
11
|
Abstract
OBJECTIVES Critically ill patients are at high risk of acute brain injury. Bedside multimodality neuromonitoring techniques can provide a direct assessment of physiologic interactions between systemic derangements and intracranial processes and offer the potential for early detection of neurologic deterioration before clinically manifest signs occur. Neuromonitoring provides measurable parameters of new or evolving brain injury that can be used as a target for investigating various therapeutic interventions, monitoring treatment responses, and testing clinical paradigms that could reduce secondary brain injury and improve clinical outcomes. Further investigations may also reveal neuromonitoring markers that can assist in neuroprognostication. We provide an up-to-date summary of clinical applications, risks, benefits, and challenges of various invasive and noninvasive neuromonitoring modalities. DATA SOURCES English articles were retrieved using pertinent search terms related to invasive and noninvasive neuromonitoring techniques in PubMed and CINAHL. STUDY SELECTION Original research, review articles, commentaries, and guidelines. DATA EXTRACTION Syntheses of data retrieved from relevant publications are summarized into a narrative review. DATA SYNTHESIS A cascade of cerebral and systemic pathophysiological processes can compound neuronal damage in critically ill patients. Numerous neuromonitoring modalities and their clinical applications have been investigated in critically ill patients that monitor a range of neurologic physiologic processes, including clinical neurologic assessments, electrophysiology tests, cerebral blood flow, substrate delivery, substrate utilization, and cellular metabolism. Most studies in neuromonitoring have focused on traumatic brain injury, with a paucity of data on other clinical types of acute brain injury. We provide a concise summary of the most commonly used invasive and noninvasive neuromonitoring techniques, their associated risks, their bedside clinical application, and the implications of common findings to guide evaluation and management of critically ill patients. CONCLUSIONS Neuromonitoring techniques provide an essential tool to facilitate early detection and treatment of acute brain injury in critical care. Awareness of the nuances of their use and clinical applications can empower the intensive care team with tools to potentially reduce the burden of neurologic morbidity in critically ill patients.
Collapse
Affiliation(s)
- Swarna Rajagopalan
- Department of Neurology, Cooper Medical School of Rowan University, Camden, NJ
| | - Aarti Sarwal
- Department of Neurology, Atrium Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
12
|
Richard S, Gabriel S, John S, Emmanuel M, John-Mary V. The focused quantitative EEG bio-marker in studying childhood atrophic encephalopathy. Sci Rep 2022; 12:13437. [PMID: 35927445 PMCID: PMC9352776 DOI: 10.1038/s41598-022-17062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Although it is a normal involution process in advanced age, brain atrophy—also termed atrophic encephalopathy—can also occur prematurely in childhood as a consequential effect of brain tissues injury through trauma or central nervous system infection, though in both normal and premature occurrences this condition always presents with loss of volume relative to the skull. A common tool for the functional study of brain activities is an electroencephalogram, but analyses of this have reportedly identified mismatches between qualitative and quantitative forms, particularly in the use of Delta-alpha ratio (DAR) indices, meaning that the values may be case dependent. The current study thus examines the value of Focused Occipital Beta-Alpha Ratio (FOBAR) as a modified biomarker for evaluating brain functional changes resulting from brain atrophy. This cross-sectional design study involves 260 patients under 18 years of age. Specifically, 207 patients with brain atrophy are compared with 53 control subjects with CT scan-proven normal brain volume. All the children underwent digital electroencephalography with brain mapping. Results show that alpha posterior dominant rhythm was present in 88 atrophic children and 44 controls. Beta as posterior dominant rhythm was present in an overwhelming 91.5% of atrophic subjects, with 0.009 p-values. The focused occipital Beta-alpha ratio correlated significantly with brain volume loss presented in diagonal brain fraction. The FOBAR and DAR values of the QEEG showed no significant correlation. This work concludes that QEEG cerebral dysfunctional studies may be etiologically and case dependent from the nature of the brain injury. Also, the focused Beta-alpha ratio of the QEEG is a prospective and potential biomarker of consideration in studying childhood atrophic encephalopathy.
Collapse
Affiliation(s)
- Sungura Richard
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania.
| | - Shirima Gabriel
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania
| | - Spitsbergen John
- Department of Neuroscience, Western Michigan University, Kalamazoo, MI, USA
| | - Mpolya Emmanuel
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania
| | - Vianney John-Mary
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
13
|
Jiang L, Zhang C, Wang S, Ai Z, Shen T, Zhang H, Duan S, Yin X, Chen YC. MRI Radiomics Features From Infarction and Cerebrospinal Fluid for Prediction of Cerebral Edema After Acute Ischemic Stroke. Front Aging Neurosci 2022; 14:782036. [PMID: 35309889 PMCID: PMC8929352 DOI: 10.3389/fnagi.2022.782036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/11/2022] [Indexed: 12/17/2022] Open
Abstract
Neuroimaging biomarkers that predict the edema after acute stroke may help clinicians provide targeted therapies and minimize the risk of secondary injury. In this study, we applied pretherapy MRI radiomics features from infarction and cerebrospinal fluid (CSF) to predict edema after acute ischemic stroke. MRI data were obtained from a prospective, endovascular thrombectomy (EVT) cohort that included 389 patients with acute stroke from two centers (dataset 1, n = 292; dataset 2, n = 97), respectively. Patients were divided into edema group (brain swelling and midline shift) and non-edema group according to CT within 36 h after therapy. We extracted the imaging features of infarct area on diffusion weighted imaging (DWI) (abbreviated as DWI), CSF on fluid-attenuated inversion recovery (FLAIR) (CSFFLAIR) and CSF on DWI (CSFDWI), and selected the optimum features associated with edema for developing models in two forms of feature sets (DWI + CSFFLAIR and DWI + CSFDWI) respectively. We developed seven ML models based on dataset 1 and identified the most stable model. External validations (dataset 2) of the developed stable model were performed. Prediction model performance was assessed using the area under the receiver operating characteristic curve (AUC). The Bayes model based on DWI + CSFFLAIR and the RF model based on DWI + CSFDWI had the best performances (DWI + CSFFLAIR: AUC, 0.86; accuracy, 0.85; recall, 0.88; DWI + CSFDWI: AUC, 0.86; accuracy, 0.84; recall, 0.84) and the most stability (RSD% in DWI + CSFFLAIR AUC: 0.07, RSD% in DWI + CSFDWI AUC: 0.09), respectively. External validation showed that the AUC of the Bayes model based on DWI + CSFFLAIR was 0.84 with accuracy of 0.77 and area under precision-recall curve (auPRC) of 0.75, and the AUC of the RF model based on DWI + CSFDWI was 0.83 with accuracy of 0.81 and the auPRC of 0.76. The MRI radiomics features from infarction and CSF may offer an effective imaging biomarker for predicting edema.
Collapse
Affiliation(s)
- Liang Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chuanyang Zhang
- Department of Radiology, Nanjing Gaochun People’s Hospital, Nanjing, China
| | - Siyu Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhongping Ai
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tingwen Shen
- Department of Radiology, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Department of Radiology, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Shaofeng Duan
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Xindao Yin,
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Yu-Chen Chen,
| |
Collapse
|
14
|
Zhu Y, Jin X, Xu L, Han P, Lin S, Lu Z. Establishment and validation of prognosis model for patients with cerebral contusion. BMC Neurol 2021; 21:463. [PMID: 34844563 PMCID: PMC8628400 DOI: 10.1186/s12883-021-02482-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background And Objective Cerebral Contusion (CC) is one of the most serious injury types in patients with traumatic brain injury (TBI). In this study, the baseline data, imaging features and laboratory examinations of patients with CC were summarized and analyzed to develop and validate a prediction model of nomogram to evaluate the clinical outcomes of patients. Methods A total of 426 patients with cerebral contusion (CC) admitted to the People’s Hospital of Qinghai Province and Affiliated Hospital of Qingdao University from January 2018 to January 2021 were included in this study, We randomly divided the cohort into a training cohort (n = 284) and a validation cohort (n = 142) with a ratio of 2:1.At Least absolute shrinkage and selection operator (Lasso) regression were used for screening high-risk factors affecting patient prognosis and development of the predictive model. The identification ability and clinical application value of the prediction model were analyzed through the analysis of receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). Results Twelve independent prognostic factors, including age, Glasgow Coma Score (GCS), Basal cistern status, Midline shift (MLS), Third ventricle status, intracranial pressure (ICP) and CT grade of cerebral edema,etc., were selected by Lasso regression analysis and included in the nomogram. The model showed good predictive performance, with a C index of (0.87, 95% CI, 0.026–0.952) in the training cohort and (0.93, 95% CI, 0.032–0.965) in the validation cohort. Clinical decision curve analysis (DCA) also showed that the model brought high clinical benefits to patients. Conclusion This study established a high accuracy of nomogram model to predict the prognosis of patients with CC, its low cost, easy to promote, is especially applicable in the acute environment, at the same time, CSF-glucose/lactate ratio(C-G/L), volume of contusion, and mean CT values of edema zone, which were included for the first time in this study, were independent predictors of poor prognosis in patients with CC. However, this model still has some limitations and deficiencies, which require large sample and multi-center prospective studies to verify and improve our results. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02482-4.
Collapse
Affiliation(s)
- Yufeng Zhu
- Department of Graduate School, Qinghai University, Xining, 810016, Qinghai, China
| | - Xiaoqing Jin
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China
| | - Lulu Xu
- Department of Geriatric Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Pei Han
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China
| | - Shengwu Lin
- Department of Graduate School, Qinghai University, Xining, 810016, Qinghai, China
| | - Zhongsheng Lu
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China.
| |
Collapse
|
15
|
Kang H, Cai Q, Gong L, Wang Y. Nomogram Prediction of Short-Term Outcome After Intracerebral Hemorrhage. Int J Gen Med 2021; 14:5333-5343. [PMID: 34522130 PMCID: PMC8434878 DOI: 10.2147/ijgm.s330742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
Background The early symptoms of patients with elevated intracranial pressure (ICP) after intracerebral hemorrhage (ICH) are easily overlooked, which will result in missing the optimal opportunity for clinical intervention. However, it is difficult for ICH patients admitted to the neurology department to receive invasive ICP monitoring, although it is crucial for the early identification of neurologic deterioration (ND). Objective The aim of this study is to investigate the association between the changes of transcranial Doppler (TCD) variables and ND after onset and establish a nomogram for predicting the short-term outcome of ICH. Methods A total of 297 patients were recruited and their clinical characteristics and the changes of TCD variables were recorded. The independent prognostic factors for the ND after onset in the ICH patients were screened from multivariate Logistic regression analysis, which were served as inputs for the nomogram construction. Discrimination and calibration validations were performed to assess the performance of the nomogram [concordance index (C-index) for discrimination and Hosmer–Lemeshow (HL) test for calibration] and the decision curve analysis was applied to assess the clinical suitability. Results ΔaPI [defined as the change of pulsatility index (PI) between the 1st and 3rd day after onset for affected hemisphere] was independently associated with the ND after onset. Moreover, hematoma volume, presence of intraventricular hemorrhage, and Glasgow coma scale were also the independent prognostic factors of ND. The developed nomogram incorporating ΔaPI showed good discrimination (C-index: 0.916 after 1000 bootstrapping) and calibration (P=0.412, HL test) and yielded net benefits. Conclusion The nomogram incorporating ΔaPI might be useful in predicting the risk of ND within 14 days after onset, which might help identify patients in the neurology department in need of further care.
Collapse
Affiliation(s)
- Huili Kang
- Department of Ultrasound, Shanghai Punan Hospital of Pudong New District, Shanghai, People's Republic of China
| | - Qiuqiong Cai
- Department of Ultrasound, Shanghai Punan Hospital of Pudong New District, Shanghai, People's Republic of China
| | - Liang Gong
- Department of Neurosurgery, Shanghai Punan Hospital of Pudong New District, Shanghai, People's Republic of China
| | - Ying Wang
- Department of Ultrasound, Shanghai Punan Hospital of Pudong New District, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Hong JH, Jeon I, Seo Y, Kim SH, Yu D. Radiographic predictors of clinical outcome in traumatic brain injury after decompressive craniectomy. Acta Neurochir (Wien) 2021; 163:1371-1381. [PMID: 33404876 DOI: 10.1007/s00701-020-04679-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Primary decompressive craniectomy (DC) is considered for traumatic brain injury (TBI) patients with clinical deterioration, presenting large amounts of high-density lesions on computed tomography (CT). Postoperative CT findings may be suitable for prognostic evaluation. This study evaluated the radiographic predictors of clinical outcome and survival using pre- and postoperative CT scans of such patients. METHODS We enrolled 150 patients with moderate to severe TBI who underwent primary DC. They were divided into two groups based on the 6-month postoperative Glasgow Outcome Scale Extended scores (1-4, unfavorable; 5-8, favorable). Radiographic parameters, including hemorrhage type, location, presence of skull fracture, midline shifting, hemispheric diameter, effacement of cisterns, parenchymal hypodensity, and craniectomy size, were reviewed. Stepwise logistic regression analysis was used to identify the prognostic factors of clinical outcome and 6-month mortality. RESULTS Multivariable logistic regression analysis revealed that age (odds ratio [OR] = 1.09; 95% confidence interval [CI] 1.032-1.151; p = 0.002), postoperative low density (OR = 12.58; 95% CI 1.247-126.829; p = 0.032), and postoperative effacement of the ambient cistern (OR = 14.52; 95% CI 2.234-94.351; p = 0.005) and the crural cistern (OR = 4.90; 95% CI 1.359-17.678; p = 0.015) were associated with unfavorable outcomes. Postoperative effacement of the crural cistern was the strongest predictor of 6-month mortality (OR = 8.93; 95% CI 2.747-29.054; p = 0.000). CONCLUSIONS Hemispheric hypodensity and effacement of the crural and ambient cisterns on postoperative CT after primary DC seems to associate with poor outcome in patients with TBI.
Collapse
Affiliation(s)
- Jung Ho Hong
- Department of Neurosurgery, Yeungnam University Hospital, Yeungnam University College of Medicine, 170, Hyeonchung street, Nam-Gu, Daegu, 42415, South Korea
| | - Ikchan Jeon
- Department of Neurosurgery, Yeungnam University Hospital, Yeungnam University College of Medicine, 170, Hyeonchung street, Nam-Gu, Daegu, 42415, South Korea
| | - Youngbeom Seo
- Department of Neurosurgery, Yeungnam University Hospital, Yeungnam University College of Medicine, 170, Hyeonchung street, Nam-Gu, Daegu, 42415, South Korea
| | - Seong Ho Kim
- Department of Neurosurgery, Yeungnam University Hospital, Yeungnam University College of Medicine, 170, Hyeonchung street, Nam-Gu, Daegu, 42415, South Korea
| | - Dongwoo Yu
- Department of Neurosurgery, Yeungnam University Hospital, Yeungnam University College of Medicine, 170, Hyeonchung street, Nam-Gu, Daegu, 42415, South Korea.
| |
Collapse
|
17
|
Chang CY, Pan PH, Li JR, Ou YC, Liao SL, Chen WY, Kuan YH, Chen CJ. Glycerol Improves Intracerebral Hemorrhagic Brain Injury and Associated Kidney Dysfunction in Rats. Antioxidants (Basel) 2021; 10:antiox10040623. [PMID: 33921791 PMCID: PMC8073011 DOI: 10.3390/antiox10040623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
In stroke patients, the development of acute kidney injury (AKI) is closely linked with worse outcomes and increased mortality. In this study, the interplay between post-stroke and AKI and treatment options was investigated in a rodent model of hemorrhagic stroke. Intrastriatal collagenase injection for 24 h caused neurological deficits, hematoma formation, brain edema, apoptosis, blood–brain barrier disruption, oxidative stress, and neuroinflammation in Sprague Dawley rats. Elevation of serum blood urea nitrogen, serum creatinine, urine cytokine-induced neutrophil chemoattractant-1, and urine Malondialdehyde, as well as moderate histological abnormality in the kidney near the glomerulus, indicated evidence of kidney dysfunction. The accumulation of podocalyxin DNA in urine further suggested a detachment of podocytes and structural deterioration of the glomerulus. Circulating levels of stress hormones, such as epinephrine, norepinephrine, corticosterone, and angiotensin II were elevated in rats with intracerebral hemorrhage. Osmotic agent glycerol held promising effects in alleviating post-stroke brain injury and kidney dysfunction. Although the detailed protective mechanisms of glycerol have yet to be determined, the intrastriatal collagenase injection hemorrhagic stroke model in rats allowed us to demonstrate the functional and structural integrity of glomerulus are targets that are vulnerable to post-stroke injury and stress hormones could be surrogates of remote communications.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-Y.C.)
| | - Ping-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-Y.C.)
- Department of Pediatrics, Tungs’ Taichung Metro Harbor Hospital, Taichung City 435, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Nursing, HungKuang University, Taichung City 433, Taiwan
| | - Yen-Chuan Ou
- Department of Urology, Tungs’ Taichung Metro Harbor Hospital, Taichung City 435, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-Y.C.)
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City 402, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Correspondence: ; Tel.: +886-4-23592525 (ext. 4022)
| |
Collapse
|