1
|
Wiltgen T, Voon C, Van Leemput K, Wiestler B, Mühlau M. Intensity scaling of conventional brain magnetic resonance images avoiding cerebral reference regions: A systematic review. PLoS One 2024; 19:e0298642. [PMID: 38483873 PMCID: PMC10939249 DOI: 10.1371/journal.pone.0298642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/26/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Conventional brain magnetic resonance imaging (MRI) produces image intensities that have an arbitrary scale, hampering quantification. Intensity scaling aims to overcome this shortfall. As neurodegenerative and inflammatory disorders may affect all brain compartments, reference regions within the brain may be misleading. Here we summarize approaches for intensity scaling of conventional T1-weighted (w) and T2w brain MRI avoiding reference regions within the brain. METHODS Literature was searched in the databases of Scopus, PubMed, and Web of Science. We included only studies that avoided reference regions within the brain for intensity scaling and provided validating evidence, which we divided into four categories: 1) comparative variance reduction, 2) comparative correlation with clinical parameters, 3) relation to quantitative imaging, or 4) relation to histology. RESULTS Of the 3825 studies screened, 24 fulfilled the inclusion criteria. Three studies used scaled T1w images, 2 scaled T2w images, and 21 T1w/T2w-ratio calculation (with double counts). A robust reduction in variance was reported. Twenty studies investigated the relation of scaled intensities to different types of quantitative imaging. Statistically significant correlations with clinical or demographic data were reported in 8 studies. Four studies reporting the relation to histology gave no clear picture of the main signal driver of conventional T1w and T2w MRI sequences. CONCLUSIONS T1w/T2w-ratio calculation was applied most often. Variance reduction and correlations with other measures suggest a biologically meaningful signal harmonization. However, there are open methodological questions and uncertainty on its biological underpinning. Validation evidence on other scaling methods is even sparser.
Collapse
Affiliation(s)
- Tun Wiltgen
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Cuici Voon
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Koen Van Leemput
- Department of Neuroscience and Biomedical Engineering, Aalto University Helsinki, Espoo, Finland
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benedikt Wiestler
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mark Mühlau
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Nabizadeh F, Zafari R, Mohamadi M, Maleki T, Fallahi MS, Rafiei N. MRI features and disability in multiple sclerosis: A systematic review and meta-analysis. J Neuroradiol 2024; 51:24-37. [PMID: 38172026 DOI: 10.1016/j.neurad.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND In this systematic review and meta-analysis, we aimed to investigate the correlation between disability in patients with Multiple sclerosis (MS) measured by the Expanded Disability Status Scale (EDSS) and brain Magnetic Resonance Imaging (MRI) features to provide reliable results on which characteristics in the MRI can predict disability and prognosis of the disease. METHODS A systematic literature search was performed using three databases including PubMed, Scopus, and Web of Science. The selected peer-reviewed studies must report a correlation between EDSS scores and MRI features. The correlation coefficients of included studies were converted to the Fisher's z scale, and the results were pooled. RESULTS Overall, 105 studies A total of 16,613 patients with MS entered our study. We found no significant correlation between total brain volume and EDSS assessment (95 % CI: -0.37 to 0.08; z-score: -0.15). We examined the potential correlation between the volume of T1 and T2 lesions and the level of disability. A positive significant correlation was found (95 % CI: 0.19 to 0.43; z-score: 0.31), (95 % CI: 0.17 to 0.33; z-score: 0.25). We observed a significant correlation between white matter volume and EDSS score in patients with MS (95 % CI: -0.37 to -0.03; z-score: -0.21). Moreover, there was a significant negative correlation between gray matter volume and disability (95 % CI: -0.025 to -0.07; z-score: -0.16). CONCLUSION In conclusion, this systematic review and meta-analysis revealed that disability in patients with MS is linked to extensive changes in different brain regions, encompassing gray and white matter, as well as T1 and T2 weighted MRI lesions.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasa Zafari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobin Mohamadi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Maleki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nazanin Rafiei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Filimonova E, Letyagin V, Zaitsev B, Kubetsky Y, Rzaev J. Application of the T1w/T2w mapping technique for spinal cord assessment in patients with degenerative cervical myelopathy. Spinal Cord 2024; 62:6-11. [PMID: 37919382 DOI: 10.1038/s41393-023-00941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
STUDY DESIGN Retrospective case-control study. OBJECTIVES To investigate signal changes on T1w/T2w signal intensity ratio maps within cervical cord in patients with degenerative cervical myelopathy (DCM). SETTING Novosibirsk Neurosurgery Center, Russia. METHODS A total of 261 patients with DCM and 42 age- and sex-matched healthy controls were evaluated using the T1w/T2w mapping method and spinal cord automatic morphometry. The T1w/T2w signal intensity ratio, which reflects white matter integrity, and the spinal cord cross-sectional area (CSA) were calculated and compared between the patients and the controls. In patients with DCM, the correlations between these parameters and neurological scores were also evaluated. RESULTS The regional T1w/T2w ratio values from the cervical spinal cord at the level of maximal compression in patients with DCM were significantly lower than those in healthy controls (p < 0.001), as were the regional CSA values (p < 0.001). There was a positive correlation between the regional values of the T1w/T2w ratio and the values of the CSA at the level of maximal spinal cord compression. CONCLUSIONS T1w/T2w mapping revealed that spinal cord tissue damage exists at the level of maximal compression in patients with DCM in association with spinal cord atrophy according to automatic morphometry. These changes were correlated with each other.
Collapse
Affiliation(s)
- Elena Filimonova
- Federal Center of Neurosurgery Novosibirsk, Novosibirsk, Russia.
- Novosibirsk State Medical University, Novosibirsk, Russia.
| | | | - Boris Zaitsev
- Federal Center of Neurosurgery Novosibirsk, Novosibirsk, Russia
| | - Yulij Kubetsky
- Federal Center of Neurosurgery Novosibirsk, Novosibirsk, Russia
| | - Jamil Rzaev
- Federal Center of Neurosurgery Novosibirsk, Novosibirsk, Russia
- Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
4
|
Colato E, Prados F, Stutters J, Bianchi A, Narayanan S, Arnold DL, Wheeler-Kingshott C, Barkhof F, Ciccarelli O, Chard DT, Eshaghi A. Networks of microstructural damage predict disability in multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 94:992-1003. [PMID: 37468305 DOI: 10.1136/jnnp-2022-330203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 06/13/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Network-based measures are emerging MRI markers in multiple sclerosis (MS). We aimed to identify networks of white (WM) and grey matter (GM) damage that predict disability progression and cognitive worsening using data-driven methods. METHODS We analysed data from 1836 participants with different MS phenotypes (843 in a discovery cohort and 842 in a replication cohort). We calculated standardised T1-weighted/T2-weighted (sT1w/T2w) ratio maps in brain GM and WM, and applied spatial independent component analysis to identify networks of covarying microstructural damage. Clinical outcomes were Expanded Disability Status Scale worsening confirmed at 24 weeks (24-week confirmed disability progression (CDP)) and time to cognitive worsening assessed by the Symbol Digit Modalities Test (SDMT). We used Cox proportional hazard models to calculate predictive value of network measures. RESULTS We identified 8 WM and 7 GM sT1w/T2w networks (of regional covariation in sT1w/T2w measures) in both cohorts. Network loading represents the degree of covariation in regional T1/T2 ratio within a given network. The loading factor in the anterior corona radiata and temporo-parieto-frontal components were associated with higher risks of developing CDP both in the discovery (HR=0.85, p<0.05 and HR=0.83, p<0.05, respectively) and replication cohorts (HR=0.84, p<0.05 and HR=0.80, p<0.005, respectively). The decreasing or increasing loading factor in the arcuate fasciculus, corpus callosum, deep GM, cortico-cerebellar patterns and lesion load were associated with a higher risk of developing SDMT worsening both in the discovery (HR=0.82, p<0.01; HR=0.87, p<0.05; HR=0.75, p<0.001; HR=0.86, p<0.05 and HR=1.27, p<0.0001) and replication cohorts (HR=0.82, p<0.005; HR=0.73, p<0.0001; HR=0.80, p<0.005; HR=0.85, p<0.01 and HR=1.26, p<0.0001). CONCLUSIONS GM and WM networks of microstructural changes predict disability and cognitive worsening in MS. Our approach may be used to identify patients at greater risk of disability worsening and stratify cohorts in treatment trials.
Collapse
Affiliation(s)
- Elisa Colato
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ferran Prados
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Jonathan Stutters
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Alessia Bianchi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Douglas L Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Claudia Wheeler-Kingshott
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Brain Connectivity Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location Vrije Universiteit, Amsterdam, Netherlands
- Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Declan T Chard
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Arman Eshaghi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
5
|
Filimonova E, Ovsiannikov K, Sosnov A, Perfilyev A, Gafurov R, Galaktionov D, Bervickiy A, Kiselev V, Rzaev J. Myelin damage and cortical atrophy in watershed regions in patients with moyamoya angiopathy. Front Neurosci 2022; 16:982829. [PMID: 36081657 PMCID: PMC9445365 DOI: 10.3389/fnins.2022.982829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background Despite it being known that chronic ischemia results in myelin damage and gray matter atrophy, data regarding patients with moyamoya angiopathy is limited. We hypothesized that chronic ischemia in moyamoya angiopathy leads to myelin damage, especially in anterior watershed regions, as well as cortical atrophy in these areas. Materials and methods Twenty adult patients with moyamoya angiopathy and 17 age- and sex-matched healthy controls were evaluated using the T1w/T2w mapping method and surface-based MR-morphometry. The T1w/T2w signal intensity ratio, which reflects the white matter integrity, and the cortical thickness, were calculated in watershed regions and compared between the patients and controls. In the patients with moyamoya angiopathy, the correlations between these parameters and the Suzuki stage were also evaluated. Results The regional T1w/T2w ratio values from centrum semiovale in patients with MMA were significantly lower than those in healthy controls (p < 0.05); there was also a downward trend in T1w/T2w ratio values from middle frontal gyrus white matter in patients compared with the controls (p < 0.1). The cortical thickness of the middle frontal gyrus was significantly lower in patients than in healthy controls (p < 0.05). There were negative correlations between the Suzuki stage and the T1w/T2w ratio values from the centrum semiovale and middle frontal white matter. Conclusion T1w/T2w mapping revealed that myelin damage exists in watershed regions in patients with moyamoya angiopathy, in association with cortical atrophy according to MR-morphometry. These changes were correlated with the disease stage.
Collapse
Affiliation(s)
- Elena Filimonova
- Federal Center of Neurosurgery, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- *Correspondence: Elena Filimonova,
| | | | | | | | | | - Dmitriy Galaktionov
- Federal Center of Neurosurgery, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Anatoliy Bervickiy
- Federal Center of Neurosurgery, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | | | - Jamil Rzaev
- Federal Center of Neurosurgery, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|