1
|
Zu Z, Adelnia F, Harkins K, Wang F, Ostenson J, Gore JC. Correction of errors in estimates of T 1ρ at low spin-lock amplitudes in the presence of B 0 and B 1 inhomogeneities. NMR IN BIOMEDICINE 2023; 36:e4951. [PMID: 37070215 PMCID: PMC10619883 DOI: 10.1002/nbm.4951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
Relaxation rates R1ρ in the rotating frame measured by spin-lock methods at very low locking amplitudes (≤ 100 Hz) are sensitive to the effects of water diffusion in intrinsic gradients and may provide information on tissue microvasculature, but accurate estimates are challenging in the presence of B0 and B1 inhomogeneities. Although composite pulse preparations have been developed to compensate for nonuniform fields, the transverse magnetization comprises different components and the spin-lock signals measured do not decay exponentially as a function of locking interval at low locking amplitudes. For example, during a typical preparation sequence, some of the magnetization in the transverse plane is nutated to the Z-axis and later tipped back, and so does not experience R1ρ relaxation. As a result, if the spin-lock signals are fit to a monoexponential decay with locking interval, there are residual errors in quantitative estimates of relaxation rates R1ρ and their dispersion with weak locking fields. We developed an approximate theoretical analysis to model the behaviors of the different components of the magnetization, which provides a means to correct these errors. The performance of this correction approach was evaluated both through numerical simulations and on human brain images at 3 T, and compared with a previous correction method using matrix multiplication. Our correction approach has better performance than the previous method at low locking amplitudes. Through careful shimming, the correction approach can be applied in studies using low spin-lock amplitudes to assess the contribution of diffusion to R1ρ dispersion and to derive estimates of microvascular sizes and spacings. The results of imaging eight healthy subjects suggest that R1ρ dispersion in human brain at low locking fields arises from diffusion among inhomogeneities that generate intrinsic gradients on a scale of capillaries (~7.4 ± 0.5 μm).
Collapse
Affiliation(s)
- Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Fatemeh Adelnia
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin Harkins
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jason Ostenson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Deparment of Physics and Astronomy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Sharafi A, Chang G, Regatte RR. Bi-component T1ρ and T2 Relaxation Mapping of Skeletal Muscle In-Vivo. Sci Rep 2017; 7:14115. [PMID: 29074883 PMCID: PMC5658335 DOI: 10.1038/s41598-017-14581-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2017] [Indexed: 12/26/2022] Open
Abstract
The goal of this paper was to evaluate the possibility of bi-component T1ρ and T2 relaxation mapping of human skeletal muscle at 3 T in clinically feasible scan times. T1ρ- and T2-weighted images of calf muscle were acquired using a modified 3D-SPGR sequence on a standard 3 T clinical MRI scanner. The mono- and biexponential models were fitted pixel-wise to the series of T1ρ and T2 weighted images. The biexponential decay of T1ρ and T2 relaxations was detected in ~30% and ~40% of the pixels across all volunteers, respectively. Monoexponential and bi-exponential short and long T1ρ relaxation times were estimated to be 26.9 ms, 4.6 ms (fraction 22%) and 33.2 ms (fraction: 78%), respectively. Similarly, the mono- and bi-exponential short and long T2 relaxation times were 24.7 ms, 4.2 ms (fraction 15%) and 30.4 ms (fraction 85%) respectively. The experiments had good repeatability with RMSCV < 15% and ICC > 60%. This approach could potentially be used in exercise intervention studies or in studies of inflammatory myopathies or muscle fibrosis, permitting greater sensitivity and specificity via measurement of different water compartments and their fractions.
Collapse
Affiliation(s)
- Azadeh Sharafi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
| | - Gregory Chang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Ravinder R Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
3
|
Wheaton AJ, Borthakur A, Kneeland JB, Regatte RR, Akella SVS, Reddy R. In vivo quantification ofT1? using a multislice spin-lock pulse sequence. Magn Reson Med 2004; 52:1453-8. [PMID: 15562469 DOI: 10.1002/mrm.20268] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A multislice spin-lock (MS-SL) pulse sequence is implemented on a clinical scanner to acquire multiple images with spin-lock-generated contrast of the knee joints of six healthy human subjects. The MS-SL sequence produces images with T1rho contrast with an additional factor of intrinsic T2rho weighting, which hinders direct measurement of T1rho. A method is presented to compensate the MS-SL-generated data with regard to T2rho in an effort to accurately calculate multislice T1rho maps in a feasible experimental time. The T2rho-compensated multislice T1rho maps produced errors in the measurement of T1rho in healthy patellar cartilage of approximately 5% compared to the gold standard measurement of T1rho acquired with single-slice spin-lock pulse sequence. The MS-SL sequence has potential as an important clinical tool for the acquisition of multislice T1rho-weighted images and/or quantitative multislice T1rho maps.
Collapse
Affiliation(s)
- Andrew J Wheaton
- Department of Radiology, University of Pennsylvania, Philadelphia 19104-6100, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Wheaton AJ, Borthakur A, Charagundla SR, Reddy R. Pulse sequence for multisliceT1?-weighted MRI. Magn Reson Med 2004; 51:362-9. [PMID: 14755662 DOI: 10.1002/mrm.10705] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A 2D multislice spin-lock (MS-SL) MR pulse sequence is presented for rapid volumetric T1rho-weighted imaging. Image quality is compared with T1rho-weighted data collected using a single-slice (SS) SL sequence and T2-weighted data from a standard MS spin-echo (SE) sequence. Saturation of longitudinal magnetization by the application of nonselective SL pulses is experimentally measured and theoretically modeled as T2rho decay. The saturation data is used to correct the image data as a function of the SL pulse duration to make quantitative measurements of T1rho. Measurements of T1rho using the saturation-corrected MS-SL data are nearly identical to those measured using an SS-SL sequence. The MS-SL sequence produces quantitative T1rho maps of an entire sample volume with the high-SNR advantages conferred by SE-based sequences.
Collapse
Affiliation(s)
- Andrew J Wheaton
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, USA.
| | | | | | | |
Collapse
|
5
|
Wheaton AJ, Borthakur A, Corbo M, Charagundla SR, Reddy R. Method for reduced SART1?-weighted MRI. Magn Reson Med 2004; 51:1096-102. [PMID: 15170827 DOI: 10.1002/mrm.20141] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A reduced specific absorption rate (SAR) version of the T(1rho)-weighted MR pulse sequence was designed and implemented. The reduced SAR method employs a partial k-space acquisition approach in which a full power spin-lock pulse is applied to only the central phase-encode lines of k-space, while the remainder of k-space receives a low-power spin-lock pulse. Acquisition of high- and low-power phase-encode lines are interspersed chronologically to minimize average power deposition. In this way, the majority of signal energy in the central portion of k-space receives full T(1rho)-weighting, while the average SAR of the overall acquisition can be reduced, thereby lowering the minimum safely allowable TR. The pulse sequence was used to create T(1rho) maps of a phantom, an in vivo mouse brain, and the brain of a human volunteer. In the images of the human brain, SAR was reduced by 40% while the measurements of T(1rho) differed by only 2%. The reduced SAR sequence enables T(1rho)-weighted MRI in a clinical setting, even at high field strengths.
Collapse
Affiliation(s)
- Andrew J Wheaton
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, USA.
| | | | | | | | | |
Collapse
|