1
|
Long L, Zhang C, He Z, Liu O, Yang H, Fan Z. LncRNA NR_045147 modulates osteogenic differentiation and migration in PDLSCs via ITGB3BP degradation and mitochondrial dysfunction. Stem Cells Transl Med 2024:szae088. [PMID: 39674578 DOI: 10.1093/stcltm/szae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/16/2024] [Indexed: 12/16/2024] Open
Abstract
Periodontitis is an inflammation of the alveolar bone and soft tissue surrounding the teeth. Although mesenchymal stem cells (MSCs) have been implicated in periodontal regeneration, the mechanisms by which they promote osteogenesis remain unclear. We examined whether epigenetic modifications mediated by the long-noncoding RNA (lncRNA) NR_045147, which plays a crucial role in cancer, influence the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Alkaline phosphatase staining, alizarin red staining, and western blotting were used to detect the effects of NR_045147 on PDLSC osteogenic differentiation. Scratch migration and transwell chemotaxis assays were used to evaluate the effects of NR_045147 on PDLSC migration. Mitochondrial function was evaluated via Seahorse XF analysis to measure changes in cellular respiration upon manipulation of NR_045147 expression. Ubiquitination assays were performed to examine the protein stability and degradation pathways affected by the NR_045147-MDM2 interaction. An in vivo nude rat calvarial defect model was established and gene-edited PDLSCs were re-implanted to examine the osteogenic effects of NR_045147. NR_045147 significantly reduced PDLSC osteogenic differentiation and migration ability both in vitro and in vivo. Under inflammatory conditions, the loss of NR_045147 rescued osteogenesis. NR_045147 significantly blocked the expression of integrin beta3-binding protein (ITGB3BP). Mechanistically, NR_045147 promoted the ITGB3BP-MDM2 interaction, thus increasing ITGB3BP ubiquitination and degradation. NR_045147 regulated PDLSC mitochondrial respiration and ITGB3BP upregulation efficiently promoted their osteogenic differentiation and migration ability. Concluding, NR_045147 downregulation enhances PDLSC osteogenic differentiation and migration, connects changes in cellular metabolism to functional outcomes via mitochondrial respiration, and promotes ITGB3BP degradation by mediating its interaction with MDM2.
Collapse
Affiliation(s)
- Lujue Long
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Zhengquan He
- Department of Orthodontics, Changsha Stomatology Hospital, Changsha, Hunan, People's Republic of China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-Maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, People's Republic of China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
Xu S, Zhang Y, Zheng Z, Sun J, Wei Y, Ding G. Mesenchymal stem cells and their extracellular vesicles in bone and joint diseases: targeting the NLRP3 inflammasome. Hum Cell 2024; 37:1276-1289. [PMID: 38985391 DOI: 10.1007/s13577-024-01101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
The nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a cytosolic multi-subunit protein complex, and recent studies have demonstrated the vital role of the NLRP3 inflammasome in the pathological and physiological conditions, which cleaves gasdermin D to induce inflammatory cell death called pyroptosis and mediates the release of interleukin-1 beta and interleukin-18 in response to microbial infection or cellular injury. Over-activation of the NLRP3 inflammasome is associated with the pathogenesis of many disorders affecting bone and joints, including gouty arthritis, osteoarthritis, rheumatoid arthritis, osteoporosis, and periodontitis. Moreover, mesenchymal stem cells (MSCs) have been discovered to facilitate the inhibition of NLRP3 and maybe ideal for treating bone and joint diseases. In this review, we implicate the structure and activation of the NLRP3 inflammasome along with the detail on the involvement of NLRP3 inflammasome in bone and joint diseases pathology. In addition, we focused on MSCs and MSC-extracellular vesicles targeting NLRP3 inflammasomes in bone and joint diseases. Finally, the existing problems and future direction are also discussed.
Collapse
Affiliation(s)
- Shuangshuang Xu
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Ying Zhang
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Yanan Wei
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China.
| |
Collapse
|
3
|
Liu L, Wen Y, Chen L, Li M, Yu J, Tian W, Wu Y, Guo S. Xenogenous implanted dental follicle stem cells promote periodontal regeneration through inducing the N2 phenotype of neutrophils. Stem Cell Res Ther 2024; 15:270. [PMID: 39183362 PMCID: PMC11346187 DOI: 10.1186/s13287-024-03882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Periodontal tissue loss is the main reason for tooth mobility and loss caused by periodontal disease. Dental follicle stem cells (DFSCs) have significant therapeutic potential in periodontal regeneration, which maybe mainly depends on their potent immunomodulatory capacity. Consequently, this study aims to elucidate the impact of implanted xenogenous DFSCs on innate immune responses during early and late stages in the periodontal defect repair period. METHODS To trace and investigate the immunomodulation mechanisms of DFSCs in vivo, DFSCs were engineered (E-DFSCs) using lentiviral vectors expressing CD63-enhanced green fluorescent protein (CD63-EGFP) and β-Actin-mCherry protein (ACTB-mCherry) to exhibit green and red fluorescence. The biological characteristics and functions of E-DFSCs were verified by proliferation, differentiation, and co-culture experiments in vitro. In vivo, the periodontal regeneration capacity of E-DFSCs was detected by implantation of murine periodontal defect model, and the response of innate immune cells was detected at the 1st, 3rd, and 5th days (early stage) and 4th week (late stage) after implantation. RESULTS In vitro assessments showed that E-DFSCs retain similar properties to their non-engineered counterparts but exhibit enhanced macrophage immunomodulation capability. In mice models, four-week micro-CT and histological evaluations indicated that E-DFSCs have equivalent efficiency to DFSCs in periodontal defect regeneration. At the early stage of repair in mice periodontal defect, fluorescence tracking showed that implanted E-DFSCs might primarily activate endogenous cells through direct contact and indirect actions, and most of these cells are myeloperoxidase-positive neutrophils. Additionally, compared with the control group, the neutrophilic infiltration and conversion of N2-type were significantly increased in the E-DFSC group. At the late stage of defect regeneration, more M2-type macrophages, fewer TRAP + osteoclasts, and an upregulated OPG/RANKL ratio were detected in the E-DFSC group compared to the control group, which indicated that immune balance tilts towards healing and bone formation. CONCLUSION The xenogenous implanted DFSCs can induce the N2 phenotype of neutrophils in the early stage, which can activate the innate immune mechanism of the host to promote periodontal tissue regeneration.
Collapse
Affiliation(s)
- Li Liu
- Engineering Research Center of Oral Translational Medicine, West China Hospital of Stomatology, Ministry of Education, Sichuan University, Chengdu, P.R. China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.
- West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, P.R. China.
- Departments of 5 Periodontics and 6 Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.
| | - Yuqi Wen
- Engineering Research Center of Oral Translational Medicine, West China Hospital of Stomatology, Ministry of Education, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, P.R. China
- Departments of 5 Periodontics and 6 Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Liangrui Chen
- Engineering Research Center of Oral Translational Medicine, West China Hospital of Stomatology, Ministry of Education, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, P.R. China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, P.R. China
| | - Maoxue Li
- Engineering Research Center of Oral Translational Medicine, West China Hospital of Stomatology, Ministry of Education, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, P.R. China
- Departments of 5 Periodontics and 6 Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Jialu Yu
- Engineering Research Center of Oral Translational Medicine, West China Hospital of Stomatology, Ministry of Education, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, P.R. China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, P.R. China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, West China Hospital of Stomatology, Ministry of Education, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, P.R. China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, P.R. China
| | - Yafei Wu
- Engineering Research Center of Oral Translational Medicine, West China Hospital of Stomatology, Ministry of Education, Sichuan University, Chengdu, P.R. China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.
- West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, P.R. China.
- Departments of 5 Periodontics and 6 Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.
| | - Shujuan Guo
- Engineering Research Center of Oral Translational Medicine, West China Hospital of Stomatology, Ministry of Education, Sichuan University, Chengdu, P.R. China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.
- West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, P.R. China.
- Departments of 5 Periodontics and 6 Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
4
|
Wan W, Zhang H, Niu L, Zhang M, Xu F, Li A, Pei D, Lin M, Cheng B. TGF-β1 promotes osteogenesis of mesenchymal stem cells via integrin mediated mechanical positive autoregulation. iScience 2024; 27:110262. [PMID: 39021801 PMCID: PMC11253692 DOI: 10.1016/j.isci.2024.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Positive autoregulation (PAR), one type of network motifs, provides a high phenotypic heterogeneity for cells to better adapt to their microenvironments. Typical mechanosensitive proteins can also form PAR, e.g., integrin mediated PAR, but the role of such mechanical PAR in physiological development and pathological process remains elusive. In this study, we found that transforming growth factor β1 (TGF-β1) and integrin levels decrease with tissue softening after the development of paradentium in vivo in rat model of periodontitis (an inflammatory disease with bone defect). Interestingly, TGF-β1 could induce the formation of mechanical PAR involving the integrin-FAK-YAP axis in mesenchymal stem cells (MSCs) by both in vitro experiments and in silico computational model. The computational model predicted a mechanical PAR involving the bimodal distribution of focus adhesions, which enables cells to accurately perceive extracellular mechanical cues. Thus, our analysis of TGF-β1 mediated mechanosensing mechanism on MSCs may help to better understand the molecular process underlying bone regeneration.
Collapse
Affiliation(s)
- Wanting Wan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004 P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 P.R. China
| | - Hui Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004 P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 P.R. China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004 P.R. China
| | - Min Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi’an 710032 P.R. China
| | - Feng Xu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049 P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 P.R. China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004 P.R. China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004 P.R. China
| | - Min Lin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049 P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 P.R. China
| | - Bo Cheng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049 P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 P.R. China
| |
Collapse
|
5
|
Balaban YE, Akbaba S, Bozkurt SB, Buyuksungur A, Akgun EE, Gonen ZB, Salkin H, Tezcaner A, Hakki SS. Local application of gingiva-derived mesenchymal stem cells on experimental periodontitis in rats. J Periodontol 2024; 95:456-468. [PMID: 37787060 DOI: 10.1002/jper.23-0246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Stem cell-based approaches in regenerative periodontal therapy have been used in different experimental models. In this study, the effect of local application of gingival mesenchymal stem cells (GMSC) in fibroin/chitosan oligosaccharide lactate hydrogel (F/COS) on periodontal regeneration was evaluated using experimental periodontitis model in rats. METHODS Mesenchymal stem cells were isolated from the gingiva of rats and characterized. Viability tests and confocal imaging of GMSC in hydrogels were performed. Healthy control without periodontitis (Health; H; n=10), control with periodontitis but no application (Periodontitis; P; n=10), only hydrogel application (F/COS; n=10), and GMSC+F/COS (n=10) four groups were formed for in vivo studies. Experimental periodontitis was created with silk sutures around the maxillary second molars. GMSC labeled with green fluorescent protein (GFP) (250,000 cells/50 μL) in F/COS were applied to the defect. Animals were sacrificed at 2nd and 8th weeks and maxillae of the animals were evaluated by micro-computed tomography (micro-CT) and histologically. The presence of GFP-labeled GMSC was confirmed at the end of 8 weeks. RESULTS Micro-CT analysis showed statistically significant new bone formation in the F/COS+GMSC treated group compared with the P group at the end of 8 weeks (p < 0.05). New bone formation was also observed in the F/COS group, but the statistical analysis revealed that this difference was not significant when compared with the P group (p > 0.05). Long junctional epithelium formation was less in the F/COS+GMSC group compared with the P group. Periodontal ligament and connective tissue were well-organized in F/COS+GMSC group. CONCLUSION The results showed that local GMSC application in hydrogel contributed to the formation of new periodontal ligament and alveolar bone in rats with experimental periodontitis. Since gingiva is easly accessible tissue, it is promising for autologous cell-based treatments in clinical applications.
Collapse
Affiliation(s)
- Yunus Emre Balaban
- Faculty of Dentistry, Department of Periodontology, Selcuk University, Konya, Turkey
| | - Sema Akbaba
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | - Serife Buket Bozkurt
- Department of Biochemistry, Niğde Ömer Halisdemir University Faculty of Medicine, Niğde, Turkey
| | - Arda Buyuksungur
- Faculty of Dentistry, Basic Medical Sciences, Ankara University, Ankara, Turkey
| | - E Ece Akgun
- Department of Histology and Embryology, Afyon Kocatepe University Faculty of Veterinary Medicine, Afyonkarahisar, Turkey
| | | | - Hasan Salkin
- Department of Medical Services and Techniques, Program of Pathology Laboratory Techniques, Vocational School, Beykent University, Istanbul, Turkey
| | - Aysen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Sema S Hakki
- Faculty of Dentistry, Department of Periodontology, Selcuk University, Konya, Turkey
| |
Collapse
|
6
|
Ustianowska K, Ustianowski Ł, Bakinowska E, Kiełbowski K, Szostak J, Murawka M, Szostak B, Pawlik A. The Genetic Aspects of Periodontitis Pathogenesis and the Regenerative Properties of Stem Cells. Cells 2024; 13:117. [PMID: 38247810 PMCID: PMC10814055 DOI: 10.3390/cells13020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Periodontitis (PD) is a prevalent and chronic inflammatory disease with a complex pathogenesis, and it is associated with the presence of specific pathogens, such as Porphyromonas gingivalis. Dysbiosis and dysregulated immune responses ultimately lead to chronic inflammation as well as tooth and alveolar bone loss. Multiple studies have demonstrated that genetic polymorphisms may increase the susceptibility to PD. Furthermore, gene expression is modulated by various epigenetic mechanisms, such as DNA methylation, histone modifications, or the activity of non-coding RNA. These processes can also be induced by PD-associated pathogens. In this review, we try to summarize the genetic processes that are implicated in the pathogenesis of PD. Furthermore, we discuss the use of these mechanisms in diagnosis and therapeutic purposes. Importantly, novel treatment methods that could promote tissue regeneration are greatly needed in PD. In this paper, we also demonstrate current evidence on the potential use of stem cells and extracellular vesicles to stimulate tissue regeneration and suppress inflammation. The understanding of the molecular mechanisms involved in the pathogenesis of PD, as well as the impact of PD-associated bacteria and stem cells in these processes, may enhance future research and ultimately improve long-term treatment outcomes.
Collapse
Affiliation(s)
- Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Martyna Murawka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| |
Collapse
|
7
|
Li J, Wang Y, Tang M, Zhang C, Fei Y, Li M, Li M, Gui S, Guo J. New insights into nanotherapeutics for periodontitis: a triple concerto of antimicrobial activity, immunomodulation and periodontium regeneration. J Nanobiotechnology 2024; 22:19. [PMID: 38178140 PMCID: PMC10768271 DOI: 10.1186/s12951-023-02261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by the local microbiome and the host immune response, resulting in periodontal structure damage and even tooth loss. Scaling and root planning combined with antibiotics are the conventional means of nonsurgical treatment of periodontitis, but they are insufficient to fully heal periodontitis due to intractable bacterial attachment and drug resistance. Novel and effective therapeutic options in clinical drug therapy remain scarce. Nanotherapeutics achieve stable cell targeting, oral retention and smart release by great flexibility in changing the chemical composition or physical characteristics of nanoparticles. Meanwhile, the protectiveness and high surface area to volume ratio of nanoparticles enable high drug loading, ensuring a remarkable therapeutic efficacy. Currently, the combination of advanced nanoparticles and novel therapeutic strategies is the most active research area in periodontitis treatment. In this review, we first introduce the pathogenesis of periodontitis, and then summarize the state-of-the-art nanotherapeutic strategies based on the triple concerto of antibacterial activity, immunomodulation and periodontium regeneration, particularly focusing on the therapeutic mechanism and ingenious design of nanomedicines. Finally, the challenges and prospects of nano therapy for periodontitis are discussed from the perspective of current treatment problems and future development trends.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yuxiao Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Maomao Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Chengdong Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yachen Fei
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Meng Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Mengjie Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Shuangying Gui
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department, Hefei, 230012, Anhui, China.
| | - Jian Guo
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department, Hefei, 230012, Anhui, China.
| |
Collapse
|
8
|
Shi Z, Jia L, Zhang Q, Sun L, Wang X, Qin X, Xia Y. An altered oral microbiota induced by injections of superparamagnetic iron oxide nanoparticle-labeled periodontal ligament stem cells helps periodontal bone regeneration in rats. Bioeng Transl Med 2023; 8:e10466. [PMID: 37206247 PMCID: PMC10189485 DOI: 10.1002/btm2.10466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 11/23/2022] [Indexed: 10/20/2023] Open
Abstract
Stem cell injection is good for periodontal regeneration due to the capacity of stem cells to differentiate toward osteogenic direction and to regulate the production of pro- and anti-inflammatory cytokines. However, injected cells are difficult to track in vivo. And there is microbiota in oral cavity, the dysbiosis of which leads to the damage and loss of periodontal tissue. Here, we demonstrated an enhanced periodontal repair was due to an altered oral microbiota. Periodontal defects were surgically prepared in rats, and periodontal ligament stem cells (PDLSCs) labeled by superparamagnetic iron oxide (SPIO) nanoparticles (PC-SPIO) were injected, with PDLSCs and saline treatments as controls. Detected by magnetic resonance imaging (MRI) and histological staining, PC-SPIO was major at limited areas in regenerated periodontal tissues. PC-SPIO-treated rats achieved better periodontal regeneration than the other two groups. Concurrently, the oral microbiota of PC-SPIO-treated rats was changed, presenting SPIO-Lac as a biomarker. SPIO-Lac assisted periodontal repair in vivo, inhibited the inflammation of macrophages induced by lipopolysaccharide (LPS) and antibacterial in vitro. Therefore, our study proved that SPIO-labeled cells can be tracked in periodontal defect and highlighted a potential positive role of an oral microbiota in periodontal regeneration, suggesting the possibility of periodontal repair promotion by manipulating oral microbiota.
Collapse
Affiliation(s)
- Zihan Shi
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsuPeople's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsuPeople's Republic of China
| | - Lu Jia
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsuPeople's Republic of China
- Department of Emergency General Dentistry, Hebei Key Laboratory of StomatologyHebei Medical UniversityShijiazhuangHebeiPeople's Republic of China
| | - Qian Zhang
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsuPeople's Republic of China
- Suzhou Stomatological HospitalSuzhouJiangsuPeople's Republic of China
| | - Liuxu Sun
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsuPeople's Republic of China
| | - Xinyue Wang
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsuPeople's Republic of China
| | - Xuan Qin
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsuPeople's Republic of China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsuPeople's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsuPeople's Republic of China
| |
Collapse
|
9
|
Galangin inhibits lipopolysaccharide-induced inflammation and stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via regulation of AKT/mTOR signaling. Allergol Immunopathol (Madr) 2023; 51:133-139. [PMID: 36617832 DOI: 10.15586/aei.v51i1.741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs), with the abilities of multidirectional differentiation and self-renewal, have been widely used in bone repair and regeneration of inflammation-stimulated oral diseases. Galangin is a flavonoid isolated from Alpinia officinarum, exerts anti-obesity, antitumor, and anti-inflammation pharmacological effects. The roles of galangin in lipopolysaccharide-induced inflammation and osteogenic differentiation of BMSCs were investigated. METHODS BMSCs were isolated from rat bone marrow and identified by flow cytometry. The isolated BMSCs were treated with 1 μg/mL lipopolysaccharides or cotreated with lipopolysaccharides and different concentrations of galangin. Cell viability and apoptosis were detected by MTT (tetrazolium component) and flow cytometry. ELISA was used to detect inflammation. Alizarin red staining was used to investigate osteogenic differentiation. RESULTS The rat BMSCs showed negative rate of CD34, and positive rate of CD29 and CD44. Lipopolysaccharides treatment reduced cell viability of BMSCs, and promoted the cell apoptosis. Incubation with galangin enhanced cell viability of lipopolysaccharide-stimulated BMSCs, and suppressed the cell apoptosis. Galangin decreased levels of TNF-α, IL-1β, and IL-6 in lipopolysaccharide-stimulated BMSCs through down-regulation of NF-κB phosphorylation (p-NF-κB). Galangin up-regulated expression of osteo-specific proteins, collagen type I alpha 1 (COL1A1), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2), to promote the osteogenic differentiation of lipopolysaccharide-stimulated BMSCs. Protein expression of p-AKT and p-mTOR in lipopolysaccharide-stimulated BMSCs were increased by galangin treatment. CONCLUSION Galangin exerted an anti-inflammatory effect against lipopolysaccharide- stimulated BMSCs and promoted osteogenic differentiation through the activation of AKT/ mTOR signaling.
Collapse
|
10
|
Haque MM, Yerex K, Kelekis-Cholakis A, Duan K. Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health 2022; 22:492. [PMID: 36380339 PMCID: PMC9664646 DOI: 10.1186/s12903-022-02530-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPeriodontal diseases are pathological processes resulting from infections and inflammation affecting the periodontium or the tissue surrounding and supporting the teeth. Pathogenic bacteria living in complex biofilms initiate and perpetuate this disease in susceptible hosts. In some cases, broad-spectrum antibiotic therapy has been a treatment of choice to control bacterial infection. However, increasing antibiotic resistance among periodontal pathogens has become a significant challenge when treating periodontal diseases. Thanks to the improved understanding of the pathogenesis of periodontal disease, which involves the host immune response, and the importance of the human microbiome, the primary goal of periodontal therapy has shifted, in recent years, to the restoration of homeostasis in oral microbiota and its harmonious balance with the host periodontal tissues. This shift in therapeutic goals and the drug resistance challenge call for alternative approaches to antibiotic therapy that indiscriminately eliminate harmful or beneficial bacteria. In this review, we summarize the recent advancement of alternative methods and new compounds that offer promising potential for the treatment and prevention of periodontal disease. Agents that target biofilm formation, bacterial quorum-sensing systems and other virulence factors have been reviewed. New and exciting microbiome approaches, such as oral microbiota replacement therapy and probiotic therapy for periodontal disease, are also discussed.
Collapse
|
11
|
Yang B, Pang X, Li Z, Chen Z, Wang Y. Immunomodulation in the Treatment of Periodontitis: Progress and Perspectives. Front Immunol 2021; 12:781378. [PMID: 34868054 PMCID: PMC8640126 DOI: 10.3389/fimmu.2021.781378] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is one of the most common dental diseases. Compared with healthy periodontal tissues, the immune microenvironment plays the key role in periodontitis by allowing the invasion of pathogens. It is possible that modulating the immune microenvironment can supplement traditional treatments and may even promote periodontal regeneration by using stem cells, bacteria, etc. New anti-inflammatory therapies can enhance the generation of a viable local immune microenvironment and promote cell homing and tissue formation, thereby achieving higher levels of immune regulation and tissue repair. We screened recent studies to summarize the advances of the immunomodulatory treatments for periodontitis in the aspects of drug therapy, microbial therapy, stem cell therapy, gene therapy and other therapies. In addition, we included the changes of immune cells and cytokines in the immune microenvironment of periodontitis in the section of drug therapy so as to make it clearer how the treatments took effects accordingly. In the future, more research needs to be done to improve immunotherapy methods and understand the risks and long-term efficacy of these methods in periodontitis.
Collapse
Affiliation(s)
- Bo Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xuefei Pang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhipeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
The Gingiva from the Tissue Surrounding the Bone to the Tissue Regenerating the Bone: A Systematic Review of the Osteogenic Capacity of Gingival Mesenchymal Stem Cells in Preclinical Studies. Stem Cells Int 2021; 2021:6698100. [PMID: 34234830 PMCID: PMC8218920 DOI: 10.1155/2021/6698100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/20/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
The current review aims to systematically assess the osteogenic capacity of gingiva-derived mesenchymal stem cells (GMSCs) in preclinical studies. A comprehensive electronic search of PubMed, Embase, Web of Science, and Scopus databases, as well as a manual search of relevant references, was performed in June 2020 without date or language restrictions. Eligibility criteria were the following: studies that compared mesenchymal stem cells (MSCs) derived from the gingiva with other MSC sources (in vitro or in vivo) or cell-free scaffold (in vivo) and studies that reported at least one of the following outcomes: osteogenic potential and new bone formation for in vitro and in vivo, respectively. Moreover, the assessment of included studies was conducted using appropriate guidelines. From 646 initial retrieved studies, 35 full-text articles were subjected to further screening and 26 studies were selected (20 in vitro studies and 6 in vivo studies). GMSCs showed great proliferation capacity and expressed recognized mesenchymal stem cell markers, particularly CD90. In vitro, MSC sources including GMSCs were capable of undergoing osteogenic differentiation with less ability in GMSCs, while most in vivo studies confirmed the capacity of GMSCs to regenerate bony defects. Concerning the assessment of methodological quality, in vitro studies met the relevant guideline except in five areas: the sample size calculation, randomization, allocation concealment, implementation, and blinding, and in vivo publications had probably low risk of bias in most domains except in three areas: allocation concealment, attrition, and blinding items.
Collapse
|
13
|
Zeng WY, Ning Y, Huang X. Advanced technologies in periodontal tissue regeneration based on stem cells: Current status and future perspectives. J Dent Sci 2021; 16:501-507. [PMID: 33384839 PMCID: PMC7770316 DOI: 10.1016/j.jds.2020.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is a progressive inflammation disease, the clinical management of which remains a challenge. The traditional management may control periodontal inflammation, but failed to regenerate functional periodontium. This review summarizes the most advancing regenerative techniques regarding stem cell culture and scaffold fabrication, such as cell sheeting, spheroid culture, electrospinning and 3D printing. The applications of different techniques manifest tremendous potential of regenerating the complete and functional periodontium. Albeit promising, new technologies have met with their own drawbacks such as insufficient vascularization and precision, which necessitate deeper modification. Thus, this review also points out the potential perspectives and methods aiming at their disadvantages, illuminating the directions of future researches to successful clinical scenarios.
Collapse
Affiliation(s)
- Wen-Yi Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yang Ning
- Department of Periodontology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xin Huang
- Department of Periodontology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
14
|
Wang X, Jiang M, He X, Zhang B, Peng W, Guo L. N‑acetyl cysteine inhibits the lipopolysaccharide‑induced inflammatory response in bone marrow mesenchymal stem cells by suppressing the TXNIP/NLRP3/IL‑1β signaling pathway. Mol Med Rep 2020; 22:3299-3306. [PMID: 32945495 PMCID: PMC7453581 DOI: 10.3892/mmr.2020.11433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
N-acetyl cysteine (NAC) has been used to inhibit lipopolysaccharide (LPS)-induced inflammation. However, the molecular mechanism underlying its anti-inflammatory effects remains to be elucidated. The present study aimed to determine the effect of NAC on the LPS-induced inflammatory response in bone marrow mesenchymal stem cells (BMSCs) and elucidate the underlying molecular mechanism. First, BMSCs were stimulated by LPS following pretreatment with NAC (0, 0.1, 0.5, 1 or 2 mM). A Cell Counting Kit 8 assay was used to determine the number of viable cells and 1 mM NAC was selected as the experimental concentration. Then, the secretion of inflammatory factors, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α was evaluated by enzyme-linked immunosorbent assay. Finally, the expression levels of mRNA and proteins, including apoptosis-associated speck-like protein containing a CARD (ASC), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), caspase-1, thioredoxin-interacting protein (TXNIP), and thioredoxin (TRX), were evaluated by reverse transcription-quantitative PCR and western blot analysis, respectively. The results demonstrated that the secretion of inflammatory factors, which was increased by the administration of LPS, was reduced by pretreatment with NAC. Furthermore, NAC reduced the expression of ASC, NLRP3, caspase-1 and TXNIP, but enhanced that of TRX. To conclude, NAC had anti-inflammatory effects on LPS-stimulated BMSCs, which was closely associated with the TXNIP/NLRP3/IL-1β signaling pathway. Thus, NAC may be a promising treatment to attenuate the inflammatory response in LPS-induced BMSCs.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Mengyi Jiang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoping He
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Bo Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Peng
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
15
|
Yue G, Edani H, Sullivan A, Jiang S, Kazerani H, Saghiri MA. Is maxillary diastema an appropriate site for implantation in rats? Int J Implant Dent 2020; 6:8. [PMID: 32100121 PMCID: PMC7042428 DOI: 10.1186/s40729-019-0203-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/24/2019] [Indexed: 01/04/2023] Open
Abstract
Background Implantology or implant dentistry is growing fast during last four decades. Facing the growing demand of implant treatment, there are extreme challenges to clinicians and researchers. First is peri-implantitis with remarkable prevalence. Though investigators have revealed that the etiology of the peri-implant infection is similar to periodontitis, clinically there is no effective treatment. Second, implantation in patients with severe systemic conditions, i.e., severe diabetes, lupus, osteoporosis, organ transplant, and cancer with intensive radiotherapy and/or chemotherapy, is another challenge to implant treatment for lack of scientific research data. Animal models are crucial to help investigators reveal the mechanisms underlying these disorders. Murine models are used most commonly. Rats are the better subject in dental implant research, due to mice could not provide clinical compatible and macro-level measurable data for implant osseointegration and peri-implantitis in oral cavity for lacking enough cancellous bone to support an implant more than 1 mm in length. Objective Our aim of this research is to find a clinical comparable rat dental implant model. Methods Six male Sprague-Dawley rats with body weight more than 500 g were used in the experiment. Each rat received two implants. One implant was placed at maxillary diastema in each side. Seven weeks after the implantation, only one implant successfully osseointegrated without movement and inflammation. Implant success and failure rate is analyzed by using Clopper-Pearson’s exact method at 95% confidence interval. Results The present data indicate that the true success rate of implantation in maxillary natural diastema in rat is less than 38.4% at a confident level of 95%. Meanwhile, Micro-CT indicates maxillary first molar position will be a promising site for implantation. Conclusion Maxillary nature diastema may not be an appropriate site for implantation research for its low successful rate, but maxillary first molar position could be a candidate for implantation research. Further researches are required to illustrate the details.
Collapse
Affiliation(s)
- Gang Yue
- Department of Periodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Husham Edani
- Department of Periodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Andrew Sullivan
- Department of Periodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Shuying Jiang
- The Office of Institutional Assessment, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Hamed Kazerani
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Mohammad Ali Saghiri
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA. .,Department of Endodontics, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA.
| |
Collapse
|