1
|
Barresi V. The Crucial Findings Derived from the Special Issue "Inside Cancer Genomics: From Structure to Therapy". Cancers (Basel) 2023; 15:3488. [PMID: 37444598 DOI: 10.3390/cancers15133488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer initiation, growth, and progression are sustained by multiple types of genetic alterations, ranging in size from single point mutations, focal genomic errors to broad chromosomal copy number alterations, gains, and losses [...].
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
2
|
Wils LJ, Poell JB, Brink A, Evren I, Brouns ER, de Visscher JGAM, Bloemena E, Brakenhoff RH. Elucidating the Genetic Landscape of Oral Leukoplakia to Predict Malignant Transformation. Clin Cancer Res 2023; 29:602-613. [PMID: 36449687 DOI: 10.1158/1078-0432.ccr-22-2210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Oral leukoplakia is the most common oral potentially malignant disorder with an annual malignant transformation rate of 1% to 5%. Consequently, oral leukoplakia patients have a 30% to 50% lifetime risk to develop oral squamous cell carcinoma. Although risk factors for malignant transformation of oral leukoplakia have been investigated, no definitive risk stratification model has been proposed. Next-generation sequencing can elucidate the genetic landscape of oral leukoplakia, which may be used to predict the risk for malignant transformation. EXPERIMENTAL DESIGN We investigated a retrospective cohort of 89 oral leukoplakia patients, and analyzed their oral leukoplakia lesions for the presence of genomic copy-number alterations and mutations in genes associated with oral squamous cell carcinoma. RESULTS In 25 of 89 (28%) patients, oral squamous cell carcinoma developed during follow-up. Seventy-nine of 89 (89%) oral leukoplakias harbored at least one genetic event. Copy-number alterations were present in 61 of 89 (69%) oral leukoplakias, most commonly gains of chromosome regions 8q24 (46%) and 20p11 (20%) and loss of 13q12 (19%). Mutations were present in 59 of 89 (66%) oral leukoplakias, most commonly in TP53 (28%), FAT1 (20%), and NOTCH1 (13%). Genetic data were combined with the presence of dysplasia to generate a prediction model, identifying three groups with a distinct risk for malignant transformation. CONCLUSIONS We provide an extensive description of genetic alterations in oral leukoplakia and its relation to malignant transformation. On the basis of our data we provide a model for the prediction of malignant transformation of oral leukoplakia using dysplasia and genetic markers.
Collapse
Affiliation(s)
- Leon J Wils
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands.,Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Jos B Poell
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Arjen Brink
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Ilkay Evren
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Elisabeth R Brouns
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Jan G A M de Visscher
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands.,Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| |
Collapse
|
3
|
Kirtane K, St. John M, Fuentes-Bayne H, Patel SP, Mardiros A, Xu H, Ng EW, Go WY, Wong DJ, Sunwoo JB, Welch JS. Genomic Immune Evasion: Diagnostic and Therapeutic Opportunities in Head and Neck Squamous Cell Carcinomas. J Clin Med 2022; 11:jcm11247259. [PMID: 36555876 PMCID: PMC9781632 DOI: 10.3390/jcm11247259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell cancers (HNSCCs) represent a diverse group of tumors emerging within different mucosal surfaces of the oral cavity, nasopharynx, oropharynx, larynx, and hypopharynx. HNSCCs share common clinical risk factors and genomic features, including smoking, alcohol, age, male sex, aneuploidy, and TP53 mutations. Viral initiating and contributing events are increasingly recognized in HNSCCs. While both Epstein-Barr Virus (EBV) and human papilloma virus (HPV) are observed, EBV is more frequently associated with nasopharyngeal cancers whereas HPV is associated with oropharyngeal cancers. HNSCCs are associated with high tumor mutational burden and loss of tumor suppressor gene function, especially in TP53 and X-linked genes. Multiple lines of evidence suggest that HNSCCs are subject to immunologic surveillance and immune-induced evolutionary pressure that correlate with negative clinical outcomes. This review will discuss genomic mechanisms related to immune-mediated pressures and propose prognostic and therapeutic implications of detectable immune escape mechanisms that drive tumorigenesis and disease progression.
Collapse
Affiliation(s)
| | - Maie St. John
- Otolaryngology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | - Sandip P. Patel
- Moores Cancer Center, UCSD School of Medicine, San Diego, CA 92093, USA
| | | | - Han Xu
- A2 Biotherapeutics, Agoura Hills, CA 91301, USA
| | - Eric W. Ng
- A2 Biotherapeutics, Agoura Hills, CA 91301, USA
| | | | - Deborah J. Wong
- Otolaryngology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - John B. Sunwoo
- Otolaryngology, Stanford University, Palo Alto, CA 94305, USA
| | - John S. Welch
- A2 Biotherapeutics, Agoura Hills, CA 91301, USA
- Correspondence:
| |
Collapse
|
4
|
Zahra K, Shabbir M, Badshah Y, Trembley JH, Badar Z, Khan K, Afsar T, Almajwal A, Alruwaili NW, Razak S. Determining KLF14 tertiary structure and diagnostic significance in brain cancer progression. Sci Rep 2022; 12:8039. [PMID: 35577881 PMCID: PMC9110742 DOI: 10.1038/s41598-022-12072-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Expression analysis of new protein targets may play a crucial role in the early detection and diagnosis of brain tumor progression. The study aimed to investigate the possible relation of KLF14, TPD52, miR-124, and PKCε in the development and progression of brain cancer and space occupying lesion (SOL) of the brain. One hundred human blood samples comprising varying diagnostic groups (SOL brain, grade I, II, III, IV) were analyzed by real-time quantitative PCR to determine the expression level of KLF14, TPD52, miR-124, and PKCε. TPD52 and PKCε were upregulated in brain cancer by 2.5- and 1.6-fold, respectively, whereas, KLF14 and miR-124 were downregulated in brain cancer. In metastatic and high-grade brain cancer, TPD52 and PKCε expression were up-regulated and KLF14 and miR-124 expression were down-regulated. Further, these genes were found to be differentially expressed in the blood of patients with SOL. Upregulation of TPD52 and PKCε, however, reduced expression of KLF14 and miR-124 in SOL of the brain as compared to healthy controls. Expression analysis of TPD52, KLF14, miR-124, and PKCε provided useful information on the differences existing between the normal brain and SOL, in addition to gliomas; thus, might prove to be useful having diagnostic or prognostic value.
Collapse
Affiliation(s)
- Kainat Zahra
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Zunaira Badar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf W Alruwaili
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
van Harten AM, Brakenhoff RH. Targeted Treatment of Head and Neck (Pre)Cancer: Preclinical Target Identification and Development of Novel Therapeutic Applications. Cancers (Basel) 2021; 13:2774. [PMID: 34204886 PMCID: PMC8199752 DOI: 10.3390/cancers13112774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) develop in the mucosal lining of the upper-aerodigestive tract. In carcinogen-induced HNSCC, tumors emerge from premalignant mucosal changes characterized by tumor-associated genetic alterations, also coined as 'fields' that are occasionally visible as leukoplakia or erythroplakia lesions but are mostly invisible. Consequently, HNSCC is generally diagnosed de novo at more advanced stages in about 70% of new diagnosis. Despite intense multimodality treatment protocols, the overall 5-years survival rate is 50-60% for patients with advanced stage of disease and seems to have reached a plateau. Of notable concern is the lack of further improvement in prognosis despite advances in treatment. This can be attributed to the late clinical presentation, failure of advanced HNSCC to respond to treatment, the deficit of effective targeted therapies to eradicate tumors and precancerous changes, and the lack of suitable markers for screening and personalized therapy. The molecular landscape of head and neck cancer has been elucidated in great detail, but the absence of oncogenic mutations hampers the identification of druggable targets for therapy to improve outcome of HNSCC. Currently, functional genomic approaches are being explored to identify potential therapeutic targets. Identification and validation of essential genes for both HNSCC and oral premalignancies, accompanied with biomarkers for therapy response, are being investigated. Attentive diagnosis and targeted therapy of the preceding oral premalignant (preHNSCC) changes may prevent the development of tumors. As classic oncogene addiction through activating mutations is not a realistic concept for treatment of HNSCC, synthetic lethality and collateral lethality need to be exploited, next to immune therapies. In recent studies it was shown that cell cycle regulation and DNA damage response pathways become significantly altered in HNSCC causing replication stress, which is an avenue that deserves further exploitation as an HNSCC vulnerability for treatment. The focus of this review is to summarize the current literature on the preclinical identification of potential druggable targets for therapy of (pre)HNSCC, emerging from the variety of gene knockdown and knockout strategies, and the testing of targeted inhibitors. We will conclude with a future perspective on targeted therapy of HNSCC and premalignant changes.
Collapse
Affiliation(s)
- Anne M. van Harten
- Cancer Center Amsterdam, Otolaryngology-Head and Neck Surgery, Tumor Biology & Immunology Section, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; or
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ruud H. Brakenhoff
- Cancer Center Amsterdam, Otolaryngology-Head and Neck Surgery, Tumor Biology & Immunology Section, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; or
| |
Collapse
|
6
|
Privitera AP, Barresi V, Condorelli DF. Aberrations of Chromosomes 1 and 16 in Breast Cancer: A Framework for Cooperation of Transcriptionally Dysregulated Genes. Cancers (Basel) 2021; 13:1585. [PMID: 33808143 PMCID: PMC8037453 DOI: 10.3390/cancers13071585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Derivative chromosome der(1;16), isochromosome 1q, and deleted 16q-producing arm-level 1q-gain and/or 16q-loss-are recurrent cytogenetic abnormalities in breast cancer, but their exact role in determining the malignant phenotype is still largely unknown. We exploited The Cancer Genome Atlas (TCGA) data to generate and analyze groups of breast invasive carcinomas, called 1,16-chromogroups, that are characterized by a pattern of arm-level somatic copy number aberrations congruent with known cytogenetic aberrations of chromosome 1 and 16. Substantial differences were found among 1,16-chromogroups in terms of other chromosomal aberrations, aneuploidy scores, transcriptomic data, single-point mutations, histotypes, and molecular subtypes. Breast cancers with a co-occurrence of 1q-gain and 16q-loss can be distinguished in a "low aneuploidy score" group, congruent to der(1;16), and a "high aneuploidy score" group, congruent to the co-occurrence of isochromosome 1q and deleted 16q. Another three groups are formed by cancers showing separately 1q-gain or 16q-loss or no aberrations of 1q and 16q. Transcriptome comparisons among the 1,16-chromogroups, integrated with functional pathway analysis, suggested the cooperation of overexpressed 1q genes and underexpressed 16q genes in the genesis of both ductal and lobular carcinomas, thus highlighting the putative role of genes encoding gamma-secretase subunits (APH1A, PSEN2, and NCSTN) and Wnt enhanceosome components (BCL9 and PYGO2) in 1q, and the glycoprotein E-cadherin (CDH1), the E3 ubiquitin-protein ligase WWP2, the deubiquitinating enzyme CYLD, and the transcription factor CBFB in 16q. The analysis of 1,16-chromogroups is a strategy with far-reaching implications for the selection of cancer cell models and novel experimental therapies.
Collapse
Affiliation(s)
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 89-97, 95123 Catania, Italy;
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 89-97, 95123 Catania, Italy;
| |
Collapse
|
7
|
Tuna M, I Amos C, B Mills G. Acquired Uniparental Disomy Regions Are Associated with Disease Outcome in Patients with Oral Cavity and Oropharynx But Not Larynx Cancers. Transl Oncol 2020; 13:100763. [PMID: 32305020 PMCID: PMC7163079 DOI: 10.1016/j.tranon.2020.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/24/2022] Open
Abstract
Acquired uniparental disomy (aUPD) regions pinpoint homozygousity and monoallelic expressed genes. We analyzed The Cancer Genome Atlas single-nucleotide polymorphism arrays and expression data from oral cavity, oropharynx, and larynx cancers to identify frequency of aUPD in each tumor type and association of aUPD regions and differentially expressed genes in the regions with survival. Cox proportional hazard models were used for survival function; and Student’s t test, for differentially expressed genes between groups. The frequency of aUPD was highest in larynx cancers (88.35%) followed by oral cavity (81.11%) and oropharynx cancers (73.85%). In univariate analysis, 11 regions at chromosome 9p were associated with overall survival (OS) in oral cavity cancers. Two regions at chromosome 17p were associated with OS in oropharyngeal cancers, but no aUPD region was associated with survival in patients with larynx cancers. Overexpression of SIGMAR1, C9orf23, and HINT2 was associated with reduced OS in patients with oral cavity cancers, and upregulation of MED27 and YWHAE was associated with shorter OS in patients with oropharynx cancers. In multivariate analysis, four aUPD regions at chromosome 9p and overexpression of HINT2 were associated with shorter OS in oral cavity cancers, and overexpression of MED27 was associated with worse OS in patients with oropharynx cancers. aUPD regions and differentially expressed genes in those regions influence the outcome and may play a role in aggressiveness in oral cavity and oropharynx cancers but not in patients with larynx cancers.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Medicine, Baylor College of Medicine, Houston, TX.
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX; Institute of Clinical and Translational Research, Baylor College of Medicine, Houston, TX
| | - Gordon B Mills
- Department of Cell, Developmental & Cancer Biology, School of Medicine, Oregon Health Science University, Portland, OR; Precision Oncology, Knight Cancer Institute, Oregon Health Science University, Portland, OR
| |
Collapse
|
8
|
Tuna M, Liu W, Amos CI, Mills GB. Genome-Wide Profiling of Acquired Uniparental Disomy Reveals Prognostic Factors in Head and Neck Squamous Cell Carcinoma. Neoplasia 2019; 21:1102-1109. [PMID: 31734631 PMCID: PMC6889229 DOI: 10.1016/j.neo.2019.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 01/04/2023] Open
Abstract
Acquired uniparental disomy (aUPD) leads to homozygosity facilitating identification of monoallelically expressed genes. We analyzed single-nucleotide polymorphism array-based genotyping data of 448 head and neck squamous cell carcinoma (HNSCC) samples from The Cancer Genome Atlas to determine the frequency and distribution of aUPD regions and their association with survival, as well as to gain a better understanding of their influence on the tumor genome. We used expression data from the same dataset to identify differentially expressed genes between groups with and without aUPD. Univariate and multivariable Cox proportional hazards models were performed for survival analysis. We found that 82.14% of HNSCC samples carried aUPD; the most common regions were in chromosome 17p (31.25%), 9p (30.13%), and 9q (27.46%). In univariate analysis, five independent aUPD regions at chromosome 9p, two regions at chromosome 9q, and the CDKN2A region were associated with poor overall survival in all groups, including training and test sets and human papillomavirus (HPV)-negative samples. Forty-three genes in areas of aUPD including PD-L1 and CDKN2A were differentially expressed in samples with aUPD compared to samples without aUPD. In multivariable analysis, aUPD at the CDKN2A region was a significant predictor of overall survival in the whole cohort and in patients with HPV-negative HNSCC. aUPD at specific regions in the genome influences clinical outcomes of HNSCC and may be beneficial for selection of personalized therapy to prolong survival in patients with this disease.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Medicine, Baylor College of Medicine, Houston, TX.
| | - Wenbin Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Cell, Developmental & Cancer Biology, School of Medicine, Oregon Health Science University, Portland, OR; Precision Oncology, Knight Cancer Institute, Portland, OR
| |
Collapse
|
9
|
Orhan C, Bakır B, Dalay N, Buyru N. ZNF703 is an important player in head and neck cancer. Clin Otolaryngol 2019; 44:1080-1086. [DOI: 10.1111/coa.13450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/10/2019] [Accepted: 09/29/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ceren Orhan
- Department of Medical Biology Cerrahpasa Medical Faculty Istanbul University Istanbul Turkey
| | - Burak Bakır
- Department of Medical Biology Cerrahpasa Medical Faculty Istanbul University Istanbul Turkey
| | - Nejat Dalay
- Department of Medical Biology Cerrahpasa Medical Faculty Istanbul University Istanbul Turkey
| | - Nur Buyru
- Department of Medical Biology Cerrahpasa Medical Faculty Istanbul University Istanbul Turkey
| |
Collapse
|
10
|
Chae J, Park WS, Kim MJ, Jang SS, Hong D, Ryu J, Ryu CH, Kim JH, Choi MK, Cho KH, Moon SH, Yun T, Kim JI, Jung YS. Genomic characterization of clonal evolution during oropharyngeal carcinogenesis driven by human papillomavirus 16. BMB Rep 2019. [PMID: 29936930 PMCID: PMC6283028 DOI: 10.5483/bmbrep.2018.51.11.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Secondary prevention via earlier detection would afford the greatest chance for a cure in premalignant lesions. We investigated the exomic profiles of non-malignant and malignant changes in head and neck squamous cell carcinoma (HNSCC) and the genomic blueprint of human papillomavirus (HPV)-driven carcinogenesis in oropharyngeal squamous cell carcinoma (OPSCC). Whole-exome (WES) and whole-genome (WGS) sequencing were performed on peripheral blood and adjacent non-tumor and tumor specimens obtained from eight Korean HNSCC patients from 2013 to 2015. Next-generation sequencing yielded an average coverage of 94.3× for WES and 35.3× for WGS. In comparative genomic analysis of non-tumor and tumor tissue pairs, we were unable to identify common cancer-associated early mutations and copy number alterations (CNA) except in one pair. Interestingly, in this case, we observed that non-tumor tonsillar crypts adjacent to HPV-positive OPSCC appeared normal under a microscope; however, this tissue also showed weak p16 expression. WGS revealed the infection and integration of high-risk type HPV16 in this tissue as well as in the matched tumor. Furthermore, WES identified shared and tumor-specific genomic alterations for this pair. Clonal analysis enabled us to infer the process by which this transitional crypt epithelium (TrCE) evolved into a tumor; this evolution was accompanied by the subsequent accumulation of genomic alterations, including an ERBB3 mutation and large-scale CNAs, such as 3q27-qter amplification and 9p deletion. We suggest that HPV16-driven OPSCC carcinogenesis is a stepwise evolutionary process that is consistent with a multistep carcinogenesis model. Our results highlight the carcinogenic changes driven by HPV16 infection and provide a basis for the secondary prevention of OPSCC.
Collapse
Affiliation(s)
- Jeesoo Chae
- Department of Biomedical Science, Seoul National University Graduate School, Seoul 03080, 2Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Weon Seo Park
- Department of Pathology, Center for Specific Organs Cancer, Hematologic Malignancy Branch, National Cancer Center, Goyang 10408, Korea
| | - Min Jung Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Se Song Jang
- Department of Biomedical Science, Seoul National University Graduate School, Seoul 03080, 2Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dongwan Hong
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang 10408, Korea
| | - Junsun Ryu
- Department of Otorhinolaryngology, Graduate School of Cancer Science and Policy, Department of Immunotherapeutics, National Cancer Center, Goyang 10408, Korea
| | - Chang Hwan Ryu
- Department of Otorhinolaryngology, Graduate School of Cancer Science and Policy, Department of Immunotherapeutics, National Cancer Center, Goyang 10408, Korea
| | - Ji-Hyun Kim
- Department of Otorhinolaryngology, Graduate School of Cancer Science and Policy, Department of Immunotherapeutics, National Cancer Center, Goyang 10408, Korea
| | - Moon-Kyung Choi
- Department of Pathology, Center for Specific Organs Cancer, Hematologic Malignancy Branch, National Cancer Center, Goyang 10408, Korea
| | - Kwan Ho Cho
- Center for Proton Therapy, Center for Specific Organs Cancer, National Cancer Center, Goyang 10408, Korea
| | - Sung Ho Moon
- Center for Proton Therapy, Center for Specific Organs Cancer, National Cancer Center, Goyang 10408, Korea
| | - Tak Yun
- Hematologic Oncology Clinic, Center for Specific Organs Cancer, National Cancer Center, Goyang 10408, Korea
| | - Jong-Il Kim
- Department of Biomedical Science, Seoul National University Graduate School, Seoul 03080; Cancer Research Institute, Seoul National University, Seoul 03080; Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea Korea
| | - Yuh-Seog Jung
- Department of Otorhinolaryngology, Graduate School of Cancer Science and Policy, Department of Immunotherapeutics, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
11
|
Genome-Wide Analysis of Head and Neck Squamous Cell Carcinomas Reveals HPV, TP53, Smoking and Alcohol-Related Allele-Based Acquired Uniparental Disomy Genomic Alterations. Neoplasia 2019; 21:197-205. [PMID: 30616092 PMCID: PMC6321975 DOI: 10.1016/j.neo.2018.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Smoking and alcohol intake are major risk factors in head and neck squamous cell carcinomas (HNSCCs). Although the link between TP53 mutation and smoking has been well established, very little is known about the link between acquired uniparental disomy (aUPD) and smoking and/or alcohol consumption or other clinical characteristics. We used TCGA genomic data to investigate whether smoking, alcohol intake, clinical and demographic variables, HPV status and TP53 mutation are associated with aUPD at specific chromosomal regions. In multivariate analysis, we found association between aUPD regions and risk factors and clinical variables of disease. aUPD regions on chromosome 4q, 5q, 9p, 9q, 13q, 17p and CDKN2A occurred significantly more often in patients with TP53-mutated HNSCC than in those with wild-type HNSCC, while aUPD regions on chromosome 9p and at CDKN2A were significantly more frequent in females than in males. Besides, aUPD occurred more frequent in HPV-positive than in HPV-negative samples with all HNSCC and larynx cancers on chromosome 9q 15q and 17p. Moreover, aUPD on CDKN2A region occurred more often in alcohol drinkers than nondrinkers in patients with all HNSCC and oral cavity cancers, while aUPD region on chromosome 5q occurred less in alcohol drinkers than nondrinkers in patients with all HNSCC and oral cavity cancers. Similarly, aUPD region on chromosome 5q occurred less in smokers than nonsmokers in patients with all HNSCC and oral cavity cancers. In conclusion, aUPD regions are not random, and certain regions are associated with risk factors for disease, and with TP53 mutation status.
Collapse
|
12
|
Su HC, Jing H, Angelus P, Freeman AF. Insights into immunity from clinical and basic science studies of DOCK8 immunodeficiency syndrome. Immunol Rev 2019; 287:9-19. [PMID: 30565250 PMCID: PMC6350515 DOI: 10.1111/imr.12723] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
Abstract
DOCK8 immunodeficiency syndrome (DIDS) is a progressive combined immunodeficiency that can be distinguished from other combined immunodeficiencies or hyperimmunoglobulinemia E syndromes in featuring (a) profound susceptibility to virus infections of the skin, with associated skin cancers, and (b) severe food allergies. The DOCK8 locus has many repetitive sequence elements that predispose to the generation of large germline deletions as well as recombination-mediated somatic DNA repair. Residual DOCK8 protein contributes to the variable disease phenotype. The severe virus infections of the skin, and probably also VZV-associated vasculopathy, reflect an important function of DOCK8, which is normally required to maintain lymphocyte shape integrity as the cells migrate through dense tissues. Loss of DOCK8 also causes immune deficits through other mechanisms including a milder generalized cell survival defect and skewing of T helper cell subsets. Recent work has uncovered the roles for DOCK8 in dendritic cell responses that can also help explain the virus susceptibility, as well as in regulatory T cells that might help explain autoimmunity in a minority of patients. Fortunately, hematopoietic stem cell transplantation cures the eczema and infection susceptibility of DIDS, but not necessarily the other disease manifestations including food allergies.
Collapse
Affiliation(s)
- Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Huie Jing
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Pam Angelus
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| |
Collapse
|
13
|
Barresi V, Cinnirella G, Valenti G, Spampinato G, Musso N, Castorina S, Condorelli DF. Gene expression profiles in genome instability-based classes of colorectal cancer. BMC Cancer 2018; 18:1265. [PMID: 30563495 PMCID: PMC6299572 DOI: 10.1186/s12885-018-5174-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Broad copy number aberrations (BCNAs) represent a common form of genome instability in colorectal cancer (CRC). CRCs show large variations in their level of aneuploidy: microsatellite-instable (MSI) tumors are known to have a near-diploid karyotype while microsatellite-stable (MSS) tumors show high level of chromosomal instability. However, MSS tumors have great heterogeneity in the number of BCNAs, with a minor percentage of samples showing an almost normal karyotype. In the present work we subdivided MSS CRCs according to a "BCNA score" and characterized their transcriptome profiles, considered as a proxy to their phenotypic features. METHODS Microsatellite testing, genome-wide DNA copy number and whole-transcript expression analysis (HTA) were performed on 33 tumor samples and 25 normal colonic tissue samples from 32 CRC patients. 15.1% of the samples were MSI tumors (n = 5), whereas 84.9% were MSS tumors (n = 28). Gene expression data of 34 additional MSI tumors was retrieved from a public functional genomics data repository. RESULTS Using as a threshold the first quartile of the BCNA score distribution, MSS samples were classified as low-BCNA (LB, n = 7) or high-BCNA (HB, n = 21). LB tumors were enriched for mucinous CRCs and their gene-expression profile resembled that of MSI samples for what concerns a subset of genes involved in secretory processes, mucosal protection, and extracellular matrix remodeling. HB tumors were predominantly non-mucinous adenocarcinomas and showed overexpression of a subset of genes typical of surface colonocytes and EGF signaling. A large percentage of unclassified samples according to the consensus molecular subtypes (CMS) classifier was found in the LB group (43%), whereas 76% HB tumors belonged to CMS2. CONCLUSIONS A classification of colorectal tumors based on the number of BCNAs identifies two groups of MSS tumors which differ for histopathology and gene expression profile. Such information can be exploited for its translational relevance in different aspects of CRC clinical management.
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Viale Santa Sofia 89-97, 95123 Catania, Italy
- Laboratory of Complex Systems, Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Giacomo Cinnirella
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Viale Santa Sofia 89-97, 95123 Catania, Italy
| | - Giovanna Valenti
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Viale Santa Sofia 89-97, 95123 Catania, Italy
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Viale Santa Sofia 89-97, 95123 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Viale Santa Sofia 89-97, 95123 Catania, Italy
| | - Sergio Castorina
- Department of Surgical Medical Sciences and Advanced Technologies “G. F. Ingrassia”, University of Catania, Catania, Italy
- Fondazione Mediterranea G.B. Morgagni, Catania, Italy
| | - Daniele F. Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Viale Santa Sofia 89-97, 95123 Catania, Italy
- Laboratory of Complex Systems, Scuola Superiore di Catania, University of Catania, Catania, Italy
| |
Collapse
|
14
|
Torabi K, Erola P, Alvarez-Mora MI, Díaz-Gay M, Ferrer Q, Castells A, Castellví-Bel S, Milà M, Lozano JJ, Miró R, Ried T, Ponsa I, Camps J. Quantitative analysis of somatically acquired and constitutive uniparental disomy in gastrointestinal cancers. Int J Cancer 2018; 144:513-524. [PMID: 30350313 PMCID: PMC6635747 DOI: 10.1002/ijc.31936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/31/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
Somatically acquired uniparental disomies (aUPDs) are frequent events in solid tumors and have been associated with cancer‐related genes. Studies assessing their functional consequences across several cancer types are therefore necessary. Here, we aimed at integrating aUPD profiles with the mutational status of cancer‐related genes in a tumor‐type specific manner. Using TCGA datasets for 1,032 gastrointestinal cancers, including colon (COAD), rectum (READ), stomach (STAD), esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), we show a non‐random distribution of aUPD, suggesting the existence of a cancer‐specific landscape of aUPD events. Our analysis indicates that aUPD acts as a “second hit” in Knudson's model in order to achieve biallelic inactivation of tumor suppressor genes. In particular, APC, ARID1A and NOTCH1 were recurrently inactivated by the presence of homozygous mutation as a consequence of aUPD in COAD and READ, STAD and ESCC, respectively. Furthermore, while TP53 showed inactivation caused by aUPD at chromosome arm 17p across all tumor types, copy number losses at this genomic position were also frequent. By experimental and computationally inferring genome ploidy, we demonstrate that an increased number of aUPD events, both affecting the whole chromosome or segments of it, were present in highly aneuploid genomes compared to near‐diploid tumors. Finally, the presence of mosaic UPD was detected at a higher frequency in DNA extracted from peripheral blood lymphocytes of patients with colorectal cancer compared to healthy individuals. In summary, our study defines specific profiles of aUPD in gastrointestinal cancers and provides unequivocal evidence of their relevance in cancer. What's new? Somatically acquired uniparental disomies (aUPDs), in which two copies of a chromosome originate from the same parent, have been documented in various human cancers. Here, the authors examined the frequency of aUPDs in different gastrointestinal cancer types. Events involving aUPDs were found to occur at high incidence in gastrointestinal cancers and at increased frequency particularly in highly aneuploid genomes. The data also reveal a nonrandom distribution of aUPDs, with evidence of biallelic inactivation of tumor suppressor genes and activation of oncogenes in a tumor type‐specific manner. The findings suggest that aUPDs are functionally relevant in gastrointestinal malignancies.
Collapse
Affiliation(s)
- Keyvan Torabi
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Pau Erola
- Bioinformatics Unit, CIBEREHD, Barcelona, Catalonia, Spain.,Roslin Institute, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Maria Isabel Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clínic, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Catalonia, Spain
| | - Marcos Díaz-Gay
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Queralt Ferrer
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Antoni Castells
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Sergi Castellví-Bel
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Montserrat Milà
- Biochemistry and Molecular Genetics Department, Hospital Clínic, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Catalonia, Spain
| | | | - Rosa Miró
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Immaculada Ponsa
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
15
|
Condorelli DF, Spampinato G, Valenti G, Musso N, Castorina S, Barresi V. Positive Caricature Transcriptomic Effects Associated with Broad Genomic Aberrations in Colorectal Cancer. Sci Rep 2018; 8:14826. [PMID: 30287863 PMCID: PMC6172234 DOI: 10.1038/s41598-018-32884-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
We re-examined the correlation between Broad Genomic Aberrations (BGAs) and transcriptomic profiles in Colorectal Cancer (CRC). Two types of BGAs have been examined: Broad Copy-Number Abnormal regions (BCNAs), distinguished in gain- and loss-type, and Copy-Neutral Loss of Heterozygosities (CNLOHs). Transcripts are classified as “OverT” or “UnderT” if overexpressed or underexpressed comparing CRCs bearing a specific BGA to CRCs not bearing it and as “UpT” or “DownT” if upregulated or downregulated in cancer compared to normal tissue. BGA-associated effects were evaluated by changes in the “Chromosomal Distribution Index” (CDI) of different transcript classes. Data show that UpT are more sensitive than DownT to BCNA-associated gene dosage effects. “Over-UpT” genes are upregulated in cancer and further overexpressed by gene dosage, defining the so called “positive caricature transcriptomic effect”. When Over-UpT genes are ranked according to overexpression, top positions are occupied by genes implicated at the functional and therapeutic level in CRC. We show that cancer-upregulated transcripts are sensitive markers of BCNA-induced effects and suggest that analysis of positive caricature transcriptomic effects can provide clues toward the identification of BCNA-associated cancer driver genes.
Collapse
Affiliation(s)
- Daniele F Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy.
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy
| | - Giovanna Valenti
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy
| | - Sergio Castorina
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, (95123), Italy
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy.
| |
Collapse
|
16
|
de Boer DV, Brink A, Buijze M, Stigter-van Walsum M, Hunter KD, Ylstra B, Bloemena E, Leemans CR, Brakenhoff RH. Establishment and Genetic Landscape of Precancer Cell Model Systems from the Head and Neck Mucosal Lining. Mol Cancer Res 2018; 17:120-130. [PMID: 30224542 DOI: 10.1158/1541-7786.mcr-18-0445] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCC) develop in fields of genetically altered cells. These fields are often dysplastic and a subset can be recognized as (erythro)leukoplakia, but most are macroscopically invisible. There is a lack of adequate treatment options to eradicate these fields, whereas they underlie the development of primary tumors as well as part of the local relapses. Unfortunately, there are almost no representative cellular models available to identify suitable treatment options. To this end, clinical biopsy specimens (n = 98) were cultured from normal appearing mucosa of the surgical margins of patients with primary HNSCCs (n = 32) to generate precancer cell culture models. This collection was extended with six previously established precancer cell cultures. Genetic analysis was performed on cultures with an extended life span (≥20 population doublings), the previously established cultures, and some randomly selected cultures. In total, cancer-associated changes were detected in 18 out of 34 (53%) cultures analyzed, which appeared to be independent of life span. A variety of genetic changes were identified, including somatic mutations as well as chromosomal copy-number aberrations (CNA). Loss of CDKN2A/p16Ink4A and mutations in TP53/p53 were most prominent. Remarkably, in some of these precancer cell cultures only chromosomal CNAs were detected, and none of the frequently occurring driver mutations. IMPLICATIONS: The precancer cell cultures, characterized herein, form a representative collection of field models that can be exploited to identify and validate new therapeutic strategies to prevent primary HNSCCs and local relapses.
Collapse
Affiliation(s)
- D Vicky de Boer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Arjen Brink
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Marijke Buijze
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Marijke Stigter-van Walsum
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine, Surgery and Pathology, University of Sheffield, South Yorkshire, England
| | - Bauke Ylstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth Bloemena
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, Amsterdam, the Netherlands.,Department of Maxillofacial Surgery/Oral Pathology, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| | - C René Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Barresi V, Valenti G, Spampinato G, Musso N, Castorina S, Rizzarelli E, Condorelli DF. Transcriptome analysis reveals an altered expression profile of zinc transporters in colorectal cancer. J Cell Biochem 2018; 119:9707-9719. [PMID: 30129075 DOI: 10.1002/jcb.27285] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
Zinc is a transition metal and catalytic cofactor involved in many biological processes including proliferation, development, differentiation, and metabolism. Zinc transporters (ZnTs) play a fundamental role in cellular zinc homeostasis. ZnTs are responsible of zinc efflux and are encoded by 10 genes belonging to solute carrier family 30A (SLC30A1-10), while zinc-regulated transporter (ZRT)/iron-regulated transporter (IRT)-like protein (ZIP) transporters are responsible for the influx of zinc into the cytoplasm and are encoded by 14 genes belonging to solute carrier family 39A (SLC39A1-14). In this study, we analyzed, by transcriptome analysis, the microRNA levels of ZnT-encoding and ZIP-encoding genes in colorectal cancer (CRC) samples matched to normal colon tissues and in CRC cell lines. Results revealed an upregulation of specific ZnT and ZIP transcripts in CRC. Upregulation of SLC30A5, SLC30A6, SLC30A7 transcripts, encoding zinc efflux transporters ZnT5, ZnT6, ZnT7, localized on endoplasmic reticulum membranes, might be part of a coordinated transcriptional program associated to the increased activity of the early secretory pathway, while transcriptional upregulation of several specific ZIP transporters (SLC39A6, SLC39A7, SLC39A9, SLC39A10, and SLC39A11) could contribute in meeting the increased demand of zinc in cancer cells. Moreover, exon-level analysis of SLC30A9, a nuclear receptor coactivator involved in the transcriptional regulation of Wnt-responsive genes, revealed the differential expression of alternative transcripts in CRC and normal colonic mucosa.
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy.,Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) - Unità di Catania, Catania, Italy
| | - Giovanna Valenti
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Sergio Castorina
- Department of Surgical Medical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.,Fondazione Mediterranea "G.B. Morgagni", Catania, Italy
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Catania, Italy.,Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) - Unità di Catania, Catania, Italy.,Institute of Biostructures and Bioimaging, National Council of Research, UOS Catania, Catania, Italy
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy.,Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) - Unità di Catania, Catania, Italy
| |
Collapse
|
18
|
Adimonye A, Stankiewicz E, Touche SL, Kudahetti S, Tinwell B, Corbishley C, Lu YJ, Watkin N, Berney D. The Prognostic Value of PIK3CA Copy Number Gain in Penile Cancer. Urology 2018:S0090-4295(18)30560-0. [PMID: 30031830 DOI: 10.1016/j.urology.2018.03.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To determine whether phosphatidylinositol-4,5-bisphosphate 3- kinase, catalytic subunit alpha (PIK3CA) copy number gain in penile cancer has prognostic value and association with histopathological parameters, human papillomavirus (HPV), and clinical outcome. METHODS PIK3CA copy number status was assessed with fluorescence in situ hybridization in tissue microarrays generated from archival paraffin embedded blocks of 199 patients with primary penile squamous cell carcinoma (PSCC). HPV DNA was detected with INNO-LiPA assay. Follow-up data were available for 174 patients. PIK3CA copy number status was correlated with histopathological parameters, high-risk HPV, cancer-specific survival and time to recurrence. RESULTS PIK3CA copy number gain was found in 84/199 (42%) of penile cancer cases. PIK3CA copy number gain was associated with tumor subtype, grade, and stage (P = .0028, P < .0001, and P = .0397, respectively), but not with lymph node status (P = .2902). PIK3CA copy number gain showed a tendency to associate with cancer-specific survival (HR = 1.76, 95% CI; 0.94-3.3; P = .0753). In multivariate analysis, PIK3CA copy number gain was found to have no prognostic value for cancer-specific survival (P = .677). Only lymph node metastasis, high tumor grade and stage were found to be independent prognostic factors for cancer-specific survival. CONCLUSION PIK3CA copy number gain could be used as a marker of high-risk disease as it correlates with more aggressive PSCC histological subtypes and higher tumor grade and stage. However, it shows no significant association with lymph node metastasis or prognostic value for cancer-specific survival in PSCC.
Collapse
Affiliation(s)
- Anthony Adimonye
- Barts Cancer Institute, Centre for Molecular Oncology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| | - Elzbieta Stankiewicz
- Barts Cancer Institute, Centre for Molecular Oncology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Susannah La Touche
- Barts Cancer Institute, Centre for Molecular Oncology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sakunthala Kudahetti
- Barts Cancer Institute, Centre for Molecular Oncology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Brendan Tinwell
- Department of Cellular Pathology, St George's Hospital, London, United Kingdom
| | - Cathy Corbishley
- Department of Cellular Pathology, St George's Hospital, London, United Kingdom
| | - Yong-Jie Lu
- Barts Cancer Institute, Centre for Molecular Oncology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nick Watkin
- Department of Urology, St George's Hospital, London, United Kingdom
| | - Daniel Berney
- Barts Cancer Institute, Centre for Molecular Oncology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
19
|
Dimitrova D, Freeman AF. Current Status of Dedicator of Cytokinesis-Associated Immunodeficiency: DOCK8 and DOCK2. Dermatol Clin 2017; 35:11-19. [PMID: 27890234 DOI: 10.1016/j.det.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DOCK8 deficiency is an autosomal recessive combined immunodeficiency disease associated with elevated IgE, atopy, recurrent sinopulmonary and cutaneous viral infections, and malignancy. The DOCK8 protein is critical for cytoskeletal organization, and deficiency impairs dendritic cell transmigration, T-cell survival, and NK cell cytotoxicity. Early hematopoietic stem cell transplantation is gaining prominence as a definitive treatment given the potential for severe complications and mortality in this disease. Recently, DOCK2 deficiency has been identified in several patients with early-onset invasive bacterial and viral infections.
Collapse
Affiliation(s)
- Dimana Dimitrova
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Peyser ND, Pendleton K, Gooding WE, Lui VWY, Johnson DE, Grandis JR. Genomic and Transcriptomic Alterations Associated with STAT3 Activation in Head and Neck Cancer. PLoS One 2016; 11:e0166185. [PMID: 27855189 PMCID: PMC5113908 DOI: 10.1371/journal.pone.0166185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hyperactivation of STAT3 via constitutive phosphorylation of tyrosine 705 (Y705) is common in most human cancers, including head and neck squamous carcinoma (HNSCC). STAT3 is rarely mutated in cancer and the (epi)genetic alterations that lead to STAT3 activation are incompletely understood. Here we used an unbiased approach to identify genomic and epigenomic changes associated with pSTAT3(Y705) expression using data generated by The Cancer Genome Atlas (TCGA). METHODS AND FINDINGS Mutation, mRNA expression, promoter methylation, and copy number alteration data were extracted from TCGA and examined in the context of pSTAT3(Y705) protein expression. mRNA expression levels of 1279 genes were found to be associated with pSTAT3(705) expression. Association of pSTAT3(Y705) expression with caspase-8 mRNA expression was validated by immunoblot analysis in HNSCC cells. Mutation, promoter hypermethylation, and copy number alteration of any gene were not significantly associated with increased pSTAT3(Y705) protein expression. CONCLUSIONS These cumulative results suggest that unbiased approaches may be useful in identifying the molecular underpinnings of oncogenic signaling, including STAT3 activation, in HNSCC. Larger datasets will likely be necessary to elucidate signaling consequences of infrequent alterations.
Collapse
Affiliation(s)
- Noah D. Peyser
- Department of Otolaryngology–Head and Neck Surgery, University of California San Francisco, San Francisco, CA, United States of America, 94143
| | - Kelsey Pendleton
- Department of Otolaryngology, University of Pittsburgh and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America, 15213
| | - William E. Gooding
- Biostatistics Facility, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America, 15213
| | - Vivian W. Y. Lui
- Department of Pharmacology and Pharmacy, School of Biomedical Sciences, Li-Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Daniel E. Johnson
- Department of Medicine, University of Pittsburgh and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America
| | - Jennifer R. Grandis
- Department of Otolaryngology–Head and Neck Surgery, University of California San Francisco, San Francisco, CA, United States of America, 94143
- * E-mail:
| |
Collapse
|
21
|
The microRNA signatures: aberrantly expressed microRNAs in head and neck squamous cell carcinoma. J Hum Genet 2016; 62:3-13. [PMID: 27557665 DOI: 10.1038/jhg.2016.105] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/15/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022]
Abstract
microRNAs (miRNAs) are responsible for fine tuning the normal expression of RNA networks in human cells. Accumulating studies have demonstrated that abnormally expressed miRNAs have pivotal roles in the development of head and neck squamous cell carcinoma (HNSCC). Specifically, expression signatures of miRNAs in HNSCC have revealed dysregulated production of miRNAs and the resultant abnormal production of mRNAs and proteins. In this review, we discuss current findings regarding aberrantly expressed miRNAs and their contribution to HNSCC molecular pathogenesis.
Collapse
|
22
|
Morita T, Uzawa N, Mogushi K, Sumino J, Michikawa C, Takahashi KI, Myo K, Izumo T, Harada K. Characterizing Genetic Transitions of Copy Number Alterations and Allelic Imbalances in Oral Tongue Carcinoma Metastasis. Genes Chromosomes Cancer 2016; 55:975-986. [DOI: 10.1002/gcc.22395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/01/2016] [Accepted: 07/07/2016] [Indexed: 01/06/2023] Open
Affiliation(s)
- Takuma Morita
- Maxillofacial Surgery, Maxillofacial Reconstruction and Function; Division of Maxillofacial and Neck Reconstruction, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University; Tokyo Japan
| | - Narikazu Uzawa
- Maxillofacial Surgery, Maxillofacial Reconstruction and Function; Division of Maxillofacial and Neck Reconstruction, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University; Tokyo Japan
| | - Kaoru Mogushi
- Division of Molecular Oncology, Graduate School of Medicine and Dentistry; Tokyo Medical and Dental University; Tokyo Japan
- Center for Genomic and Regenerative Medicine, Juntendo University, School of Medicine; Tokyo Japan
| | - Jun Sumino
- Maxillofacial Surgery, Maxillofacial Reconstruction and Function; Division of Maxillofacial and Neck Reconstruction, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University; Tokyo Japan
| | - Chieko Michikawa
- Maxillofacial Surgery, Maxillofacial Reconstruction and Function; Division of Maxillofacial and Neck Reconstruction, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University; Tokyo Japan
| | | | - Kunihiro Myo
- Maxillofacial Surgery, Maxillofacial Reconstruction and Function; Division of Maxillofacial and Neck Reconstruction, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University; Tokyo Japan
| | - Toshiyuki Izumo
- Diagnostic Oral Pathology, Graduate School of Medicine and Dentistry; Tokyo Medical and Dental University; Tokyo Japan
| | - Kiyoshi Harada
- Maxillofacial Surgery, Maxillofacial Reconstruction and Function; Division of Maxillofacial and Neck Reconstruction, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
23
|
Baltaci E, Karaman E, Dalay N, Buyru N. Analysıs of gene copy number changes ın head and neck cancer. Clin Otolaryngol 2016; 43:1004-1009. [PMID: 27259694 DOI: 10.1111/coa.12686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Chromosomal alterations and copy number changes are frequent events in tumors, leading to amplification of focal regions containing several oncogenes. Gains and losses of several regions have been reported in head and neck cancer (HNC) but the copy number changes of the individual genes located in these regions have not been analyzed so far. In this study we aimed to analyze the copy number variations in patients with HNC. DESIGN Prospective study SETTING: University hospital PARTICIPANTS: 50 patients with squamous cell carcinoma of the head and neck METHODS: Copy number changes and amplifications of 22 genes in tumors and matched tissue were analyzed by MLPA which allows simultaneous analysis of gene copy numbers in multiple genetic regions. RESULTS Amplifications were observed in 52% and losses were detected in 20% of the samples. Chromosome 8 was found to harbor the most frequent copy number alterations. The most frequently amplified genes were CCND1 and the MED1 genes followed by the MTDH and MYC genes on the long arm and ZNF703 on the short arm of chromosome 8. Amplification of the ZNF703, PRDM14 and MYC genes were highly correlated suggesting that the genes displaying high copy number changes on chromosome 8 collaborate during carcinogenesis. CONCLUSIONS The alterations found in our study supports the contribution of gene amplifications and indicate cooperation between certain oncogenes in the pathogenesis of HNSCC. Correlations between amplification of less familiar genes and known oncogenes warrant further investigation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- E Baltaci
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - E Karaman
- Department of Otorhinolaryngology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - N Dalay
- Oncology Institute, Istanbul University, Istanbul, Turkey
| | - N Buyru
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
24
|
Doçi CL, Mikelis CM, Lionakis MS, Molinolo AA, Gutkind JS. Genetic Identification of SEMA3F as an Antilymphangiogenic Metastasis Suppressor Gene in Head and Neck Squamous Carcinoma. Cancer Res 2015; 75:2937-48. [PMID: 25952650 DOI: 10.1158/0008-5472.can-14-3121] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/27/2015] [Indexed: 01/08/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCC) often metastasize to locoregional lymph nodes, and lymph node involvement represents one of the most important prognostic factors of poor clinical outcome. HNSCCs are remarkably lymphangiogenic and represent a clear example of a cancer that utilizes the lymphatic vasculature for malignant dissemination; however, the molecular mechanisms underlying lymphangiogenesis in HNSCC is still poorly understood. Of interest, we found that an axon guidance molecule, Semaphorin 3F (SEMA3F), is among the top 1% underexpressed genes in HNSCC, and that genomic loss of SEMA3F correlates with increased metastasis and decreased survival. SEMA3F acts on its coreceptors, plexins and neuropilins, among which neuropilin-2 (NRP2) is highly expressed in lymphatic endothelial cells (LEC) but not in oral epithelium and most HNSCCs. We show that recombinant SEMA3F promotes LEC collapse and potently inhibits lymphangiogenesis in vivo. By reconstituting all possible plexin and neuropilin combinations, we found that SEMA3F acts through multiple receptors, but predominantly requires NRP2 to signal in LECs. Using orthotopic HNSCC metastasis mouse models, we provide direct evidence that SEMA3F re-expression diminishes lymphangiogenesis and lymph node metastasis. Furthermore, analysis of a large tissue collection revealed that SEMA3F is progressively lost during HNSCC progression, concomitant with increased tumor lymphangiogenesis. SEMA3F is localized to 3p21, an early and frequently deleted locus in HNSCC and many other prevalent human malignancies. Thus, SEMA3F may represent an antilymphangiogenic metastasis suppressor gene widely lost during cancer progression, hence serving as a prognostic biomarker and an attractive target for therapeutic intervention to halt metastasis.
Collapse
Affiliation(s)
- Colleen L Doçi
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Constantinos M Mikelis
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - J Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland.
| |
Collapse
|
25
|
Gollin SM. Cytogenetic alterations and their molecular genetic correlates in head and neck squamous cell carcinoma: a next generation window to the biology of disease. Genes Chromosomes Cancer 2014; 53:972-90. [PMID: 25183546 DOI: 10.1002/gcc.22214] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/15/2014] [Indexed: 01/14/2023] Open
Abstract
Cytogenetic alterations underlie the development of head and neck squamous cell carcinoma (HNSCC), whether tobacco and alcohol use, betel nut chewing, snuff or human papillomavirus (HPV) causes the disease. Many of the molecular genetic aberrations in HNSCC result from these cytogenetic alterations. This review presents a brief introduction to the epidemiology of HNSCC, and discusses the role of HPV in the disease, cytogenetic alterations and their frequencies in HNSCC, their molecular genetic and The Cancer Genome Atlas (TCGA) correlates, prognostic implications, and possible therapeutic considerations. The most frequent cytogenetic alterations in HNSCC are gains of 5p14-15, 8q11-12, and 20q12-13, gains or amplifications of 3q26, 7p11, 8q24, and 11q13, and losses of 3p, 4q35, 5q12, 8p23, 9p21-24, 11q14-23, 13q12-14, 18q23, and 21q22. To understand their effects on tumor cell biology and response to therapy, the cytogenetic findings in HNSCC are increasingly being examined in the context of the biochemical pathways they disrupt. The goal is to minimize morbidity and mortality from HNSCC using cytogenetic abnormalities to identify valuable diagnostic biomarkers for HNSCC, prognostic biomarkers of tumor behavior, recurrence risk, and outcome, and predictive biomarkers of therapeutic response to identify the most efficacious treatment for each individual patient's tumor, all based on a detailed understanding of the next generation biology of HNSCC.
Collapse
Affiliation(s)
- Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; Departments of Otolaryngology and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; University of Pittsburgh Cancer Institute, Pittsburgh, PA
| |
Collapse
|
26
|
Tumor protein D52 (TPD52) and cancer-oncogene understudy or understudied oncogene? Tumour Biol 2014; 35:7369-82. [PMID: 24798974 DOI: 10.1007/s13277-014-2006-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/22/2014] [Indexed: 12/16/2022] Open
Abstract
The Tumor protein D52 (TPD52) gene was identified nearly 20 years ago through its overexpression in human cancer, and a substantial body of data now strongly supports TPD52 representing a gene amplification target at chromosome 8q21.13. This review updates progress toward understanding the significance of TPD52 overexpression and targeting, both in tumors known to be characterized by TPD52 overexpression/amplification, and those where TPD52 overexpression/amplification has been recently or variably reported. We highlight recent findings supporting microRNA regulation of TPD52 expression in experimental systems and describe progress toward deciphering TPD52's cellular functions, particularly in cancer cells. Finally, we provide an overview of TPD52's potential as a cancer biomarker and immunotherapeutic target. These combined studies highlight the potential value of genes such as TPD52, which are overexpressed in many cancer types, but have been relatively understudied.
Collapse
|