1
|
Hofmann E, Eggers B, Heim N, Kramer FJ, Nokhbehsaim M, Götz W. Bevacizumab and sunitinib mediate osteogenic and pro-inflammatory molecular changes in primary human alveolar osteoblasts in vitro. Odontology 2022; 110:634-647. [PMID: 35171372 PMCID: PMC9463285 DOI: 10.1007/s10266-022-00691-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/04/2022] [Indexed: 12/03/2022]
Abstract
Antiangiogenic medications target the de novo blood vessel formation in tumorigenesis. However, these novel drugs have been linked to the onset of medication-related osteonecrosis of the jaw (MRONJ). The aim of this in vitro study was to examine the effects of the vascular endothelial growth factor A (VEGFA) antibody bevacizumab (BEV) and the receptor tyrosine kinase inhibitor (RTKI) sunitinib (SUN) on primary human osteoblasts derived from the alveolar bone. Primary human alveolar osteoblasts (HAOBs) were treated with BEV or SUN for 48 h. Cellular metabolic activity was examined by XTT assay. Differentially regulated genes were identified by screening of 22 selected osteogenic and angiogenic markers by quantitative real-time reverse transcriptase polymerase chain reaction (qRT2-PCR). Protein levels of alkaline phosphatase (ALP), collagen type 1, α1 (COL1A1) and secreted protein acidic and cysteine rich (SPARC) were examined by enzyme-linked immunoassay (ELISA). Treatment with BEV and SUN did not exhibit direct cytotoxic effects in HAOBs as confirmed by XTT assay. Of the 22 genes examined by qRT2-PCR, four genes were significantly regulated after BEV treatment and eight genes in the SUN group as compared to the control group. Gene expression levels of ALPL, COL1A1 and SPARC were significantly downregulated by both drugs. Further analysis by ELISA indicated the downregulation of protein levels of ALP, COL1A1 and SPARC in the BEV and SUN groups. The effects of BEV and SUN in HAOBs may be mediated by alterations to osteogenic and catabolic markers. Therapeutic or preventive strategies in MRONJ may address drug-induced depression of osteoblast differentiation.
Collapse
Affiliation(s)
- Elena Hofmann
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Welschnonnenstr 17, 53111, Bonn, Germany.
- Department of Oral and Maxillofacial Surgery, Charité- Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Welschnonnenstr 17, 53111, Bonn, Germany
| | - Nils Heim
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Welschnonnenstr 17, 53111, Bonn, Germany
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Welschnonnenstr 17, 53111, Bonn, Germany
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, 53111, Bonn, Germany
| | - Werner Götz
- Department of Orthodontics, University Hospital Bonn, 53111, Bonn, Germany
| |
Collapse
|
2
|
Combination of 5-Florouracil and polyphenol EGCG exerts suppressive effects on oral cancer cells exposed to radiation. Arch Oral Biol 2019; 101:8-12. [PMID: 30851692 DOI: 10.1016/j.archoralbio.2019.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/03/2019] [Accepted: 02/27/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Natural compounds such as epigallocatechin-3-gallate (EGCG) have previously shown chemotherapeutic properties with few side-effects. In our study, we evaluated the effects of combining EGCG with 5-fluorouracil (5-FU) and radiotherapy on oral squamous cell cancer. We evaluated whether the combination of lower doses of 5-FU with EGCG could be equally or more effective than the use of higher doses of 5-FU alone. METHODS Cell viability, migration and cell cycles were assayed in oral cancer cell lines treated with 5-FU, 5-FU + EGCG and radiation (0, 2.5 and 5 Gy). RESULTS This study found that the combination of EGCG with 5-FU reduced cell viability and migration distance compared to control samples and the same dose of 5-FU alone. Addition of EGCG increased the number of cells in the G2/M phase, while 5-FU arrested the cell cycle in phase S. Moreover, cell exposure to 5 Gy radiation decreased the effects of combining with EGCG. CONCLUSIONS In summary, the combination of EGCG and 5-FU reduced both cell viability and migration as well as altered the cell cycle to a greater extent than 5-FU alone.
Collapse
|
3
|
Sergeant G, Martens L, Van Troys M, Masuzzo P. DoRes within CellMissy: dose-response analysis on cell migration and related data. Bioinformatics 2019; 35:696-697. [PMID: 30052834 PMCID: PMC6378935 DOI: 10.1093/bioinformatics/bty634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022] Open
Abstract
Summary In cancer research, cell-based assays are used to assess cell migration and invasion. The major bottleneck is the lack of automated tools to visualize and analyse the large amounts of biological dose-response data produced. To address this challenge, we have developed an automated and free software package for dose-response analyses, DoRes, which is released as an add-on of the freely available and open-source tool CellMissy, dedicated to the management and analysis of cell migration data. DoRes implements non-linear curve fitting functionality into a robust, user-friendly and flexible software package with the possibility of importing a tabular file or starting from a cell migration experiment. We demonstrate the ability of the software by analysing public dose-response data and a typical cell migration experiment, and show that the extracted dose-response parameters and the calculated statistical values are consistently comparable to those of the widely used, commercial software GraphPad Prism. Availability and implementation The software here presented is a new module in CellMissy, an open-source and cross-platform package dedicated to the management, storage and analysis of cell migration data. The new module is written in Java, and inherits the cross-platform support from CellMissy. Source code and binaries are freely available under the Apache2 open-source licence at https://github.com/compomics/cellmissy/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gwendolien Sergeant
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Marleen Van Troys
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Paola Masuzzo
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Bierbaumer L, Schwarze UY, Gruber R, Neuhaus W. Cell culture models of oral mucosal barriers: A review with a focus on applications, culture conditions and barrier properties. Tissue Barriers 2018; 6:1479568. [PMID: 30252599 PMCID: PMC6389128 DOI: 10.1080/21688370.2018.1479568] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the function of oral mucosal epithelial barriers is essential for a plethora of research fields such as tumor biology, inflammation and infection diseases, microbiomics, pharmacology, drug delivery, dental and biomarker research. The barrier properties are comprised by a physical, a transport and a metabolic barrier, and all these barrier components play pivotal roles in the communication between saliva and blood. The sum of all epithelia of the oral cavity and salivary glands is defined as the blood-saliva barrier. The functionality of the barrier is regulated by its microenvironment and often altered during diseases. A huge array of cell culture models have been developed to mimic specific parts of the blood-saliva barrier, but no ultimate standard in vitro models have been established. This review provides a comprehensive overview about developed in vitro models of oral mucosal barriers, their applications, various cultivation protocols and corresponding barrier properties.
Collapse
Affiliation(s)
- Lisa Bierbaumer
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| | - Uwe Yacine Schwarze
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Reinhard Gruber
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria.,d Department of Periodontology , School of Dental Medicine, University of Bern , Bern , Switzerland
| | - Winfried Neuhaus
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| |
Collapse
|
5
|
Pons-Fuster López E, Wang QT, Wei W, López Jornet P. Potential chemotherapeutic effects of diosgenin, zoledronic acid and epigallocatechin-3-gallate on PE/CA-PJ15 oral squamous cancer cell line. Arch Oral Biol 2017. [DOI: 10.1016/j.archoralbio.2017.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Du C, Wang Y, Li H, Huang Y, Jiang O, You Y, Luo F. Zoledronic acid augments the radiosensitivity of cancer cells through perturbing S- and M-phase cyclins and p21 CIP1 expression. Oncol Lett 2017; 14:4237-4242. [PMID: 28943933 DOI: 10.3892/ol.2017.6710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 06/02/2017] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy and adjuvant chemotherapy have become the standard treatments for multiple types of cancer. Although cancer cells are usually sensitive to radiotherapy, metastasis and local failure still occur mainly due to developed resistance to radiotherapy. Thus, it is critical to improve therapeutics for cancer treatment. The present study demonstrated that third-generation bisphosphonate zoledronic acid (ZOL), even at a low concentration, augments the radiosensitivity of cancer cells exposed to ionizing radiation (IR) by inducing S-phase arrest and subsequently promoting apoptosis. This function of ZOL was associated with elevated levels of cyclin A and cyclin B in the S and M phases, as well as decreased p21CIP1 expression. In addition, ZOL also inhibited malignant the invasiveness of cancer cells. Notably, these effects could be enhanced concurrently with IR. The present data indicated that combined treatment with ZOL plus IR may be a novel technique to augment the radiosensitivity of cancer cells.
Collapse
Affiliation(s)
- Chi Du
- Department of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610004, P.R. China.,Department of Oncology, The Second People's Hospital of Neijiang, Luzhou Medical College, Neijiang, Sichuan 641003, P.R. China
| | - Yuyi Wang
- Department of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610004, P.R. China
| | - Haijun Li
- Department of Oncology, The Second People's Hospital of Neijiang, Luzhou Medical College, Neijiang, Sichuan 641003, P.R. China
| | - Yi Huang
- Department of Oncology, The Second People's Hospital of Neijiang, Luzhou Medical College, Neijiang, Sichuan 641003, P.R. China
| | - Ou Jiang
- Department of Oncology, The Second People's Hospital of Neijiang, Luzhou Medical College, Neijiang, Sichuan 641003, P.R. China
| | - Yanjie You
- Pathological Examinations and Research Center, Luohe, Henan 462002, P.R. China.,Department of Pharmacy, Luohe Medical College, Luohe, Henan 462002, P.R. China
| | - Feng Luo
- Department of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610004, P.R. China
| |
Collapse
|
7
|
Schiegnitz E, Kämmerer PW, Rode K, Schorn T, Brieger J, Al-Nawas B. Growth differentiation factor 15 as a radiation-induced marker in oral carcinoma increasing radiation resistance. J Oral Pathol Med 2015; 45:63-9. [PMID: 25880686 DOI: 10.1111/jop.12323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Growth differentiation factor 15 (GDF15) is involved in tumor pathogenesis of oral squamous cell carcinoma (OSCC). The aim of this study was an investigation of the potential influence of GDF15 on radioresistance of OSCC cells in vitro. METHODS Oral squamous cell carcinoma cell lines were irradiated with 0, 2, or 6 Gy, and GDF15 expression in the supernatant per survived cell colony was examined with ELISA. Non-irradiated and OSCC cell lines irradiated with 6 Gy were evaluated for GDF15 expression using immunofluorescent staining. For further investigation of GDF15 effects on radioresistance, a GDF15 knockdown model in a human OSCC cell line was established, and apoptotic activity after radiation was measured using the Caspase-Glo 3/7 system. RESULTS ELISA and immunofluorescent staining indicated an increased GDF15 expression in 5 OSCC cell lines compared with human gingival epithelial cells. Irradiation with two and six gray resulted in a significant elevation of GDF15 expression per survived cell colony in the irradiated OSCC cell lines (P < 0.001). Furthermore, a dose-dependent expression of GDF15 was seen. Immunofluorescent staining confirmed an elevated GDF15 expression in irradiated OSCC cell lines (n = 10; P ≤ 0.001). Apoptotic activity was significantly increased after irradiation in the GDF15 knockdown group compared with control cells (n = 24; P < 0.001). CONCLUSION This study describes for the first time the vital role of GDF15 both in tumorigenesis and in radioresistance of OSCC cells. With its anti-apoptotic effects, GDF15 possibly promotes tumor progression and might protect carcinoma cells against irradiation effects. Consequently, GDF15 may be a promising therapeutic target in oral cancer.
Collapse
Affiliation(s)
- Eik Schiegnitz
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Centre, Rostock, Germany
| | - Katharina Rode
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Schorn
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jürgen Brieger
- Department of Otorhinolaryngology, Molecular Tumor Biology Laboratory, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|