1
|
Yue K, Yao X. Prognostic model based on telomere-related genes predicts the risk of oral squamous cell carcinoma. BMC Oral Health 2023; 23:484. [PMID: 37452322 PMCID: PMC10347773 DOI: 10.1186/s12903-023-03157-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND This study investigated a potential prognostic model based on telomere-related genes (TRGs) for the clinical prediction of oral squamous cell carcinoma (OSCC). METHODS Gene expression data and associated clinical phenotypes were obtained from online databases. Differentially expressed (DE)-TRGs were identified between OSCC and normal samples, followed by protein-protein interaction and enrichment analyses. Subsequently, the prognostic genes explored based on the DE-TRGs and survival data were applied in the establishment of the current prognostic model, and an integrated analysis was performed between high- and low-risk groups using a prognostic model. The expression of certain prognostic genes identified in the present study was validated using qPCR analysis and/or western blot in OSCC cell lines and clinical samples. RESULTS 169 DE-TRGs were identified between the OSCC samples and controls. DE-TRGs are mainly involved in functions such as hypoxia response and pathways such as the cell cycle. Eight TRGs (CCNB1, PDK4, PLOD2, RACGAP1, MET, PLK1, KPNA2, and CCNA2) associated with OSCC survival and prognosis were used to construct a prognostic model. qPCR analysis and western blot showed that most of the eight prognostic genes were consistent with the current bioinformatics results. Analysis of the high- and low-risk groups for OSCC determined by the prognostic model showed that the current prognostic model was reliable. CONCLUSIONS A novel prognostic model for OSCC was constructed by TRGs. PLOD2 and APLK1 may participate in the progression of OSCC via responses to hypoxia and cell cycle pathways, respectively. TRGs, including KPNA2 and CCNA2, may serve as novel prognostic biomarkers for OSCC.
Collapse
Affiliation(s)
- Kun Yue
- Department of Stomatology, Weifang Hospital of Traditional Chinese Medicine, Weifang, 261000, Shandong, China
| | - Xue Yao
- Department of Stomatology, Sunshine Union Hospital, 9000 Yingqian Road, High-tech Zone, Weifang, 261000, Shandong, China.
| |
Collapse
|
2
|
Li Y, Zhu L, Yao H, Zhang Y, Kong X, Chen L, Song Y, Mu A, Li X. Association of Inflammation-Related Gene Polymorphisms With Susceptibility and Radiotherapy Sensitivity in Head and Neck Squamous Cell Carcinoma Patients in Northeast China. Front Oncol 2021; 11:651632. [PMID: 34150619 PMCID: PMC8212814 DOI: 10.3389/fonc.2021.651632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Background Inflammation-related gene polymorphisms are some of the most important determinants for cancer susceptibility, clinical phenotype diversity, and the response to radiotherapy and chemotherapy. However, the relationship between these polymorphisms and head and neck squamous cell carcinoma (HNSCC) remains unclear. The aim of this study was to investigate the role of inflammation-related gene polymorphisms in the developmental risk and radiotherapy sensitivity of HNSCC. Methods The Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) genotyping system was used to genotype 612 individuals from a Chinese population for 28 inflammation-related gene polymorphisms. Results The protein kinase B (AKT1) rs1130233 TT, dominance model (CT+TT vs. CC), recessive model (TT vs. CT+CC), and rs2494732 CC genotypes were associated with reduced risk of HNSCC (P=0.014; P=0.041; P=0.043). The polymeric immunoglobulin receptor (PIGR) rs291097 GA, dominance model (GA+AA vs. GG), and rs291102 dominance model (GA+AA vs. GG) were associated with increased risk of HNSCC (P=0.025; P=0.025; P=0.040). The interleukin-4 receptor-α (IL-4RA) rs1801275 AA genotype was significantly correlated with increased radiotherapy sensitivity of HNSCC patients (P=0.030). In addition, age ≤ 60 years, non-smoker status, and normal levels of squamous cell carcinoma antigen (SCC) were found to be associated with increased radiotherapy sensitivity of HNSCC patients (P=0.033; P=0.033; P=0.030). Conclusion The AKT1 rs1130233, AKT1 rs2494732, PIGR rs291097, and PIGR rs291102 polymorphisms were significantly related to the risk of HNSCC. The IL-4RA rs1801275 polymorphism, age ≤ 60 years, non-smoker status, and normal levels of SCC were significantly associated with increased radiotherapy sensitivity of HNSCC.
Collapse
Affiliation(s)
- Ying Li
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, and Key Laboratory of Tumor Radiosensitization and Normal Tissue Radioprotection of Liaoning Province, Shenyang, China
| | - Li Zhu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, and Key Laboratory of Tumor Radiosensitization and Normal Tissue Radioprotection of Liaoning Province, Shenyang, China
| | - Hongmin Yao
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, and Key Laboratory of Tumor Radiosensitization and Normal Tissue Radioprotection of Liaoning Province, Shenyang, China
| | - Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, and Key Laboratory of Tumor Radiosensitization and Normal Tissue Radioprotection of Liaoning Province, Shenyang, China
| | - Xiangyu Kong
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, and Key Laboratory of Tumor Radiosensitization and Normal Tissue Radioprotection of Liaoning Province, Shenyang, China
| | - Liping Chen
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, and Key Laboratory of Tumor Radiosensitization and Normal Tissue Radioprotection of Liaoning Province, Shenyang, China
| | - Yingqiu Song
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, and Key Laboratory of Tumor Radiosensitization and Normal Tissue Radioprotection of Liaoning Province, Shenyang, China
| | - Anna Mu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, and Key Laboratory of Tumor Radiosensitization and Normal Tissue Radioprotection of Liaoning Province, Shenyang, China
| | - Xia Li
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, and Key Laboratory of Tumor Radiosensitization and Normal Tissue Radioprotection of Liaoning Province, Shenyang, China
| |
Collapse
|
3
|
Starzyńska A, Sejda A, Adamska P, Marvaso G, Sakowicz-Burkiewicz M, Adamski Ł, Jereczek-Fossa BA. Prognostic value of the PIK3CA, AKT, and PTEN mutations in oral squamous cell carcinoma: literature review. Arch Med Sci 2021; 17:207-217. [PMID: 33488873 PMCID: PMC7811327 DOI: 10.5114/aoms.2020.100780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
Over 260,000 (2013) new oral squamous cell carcinoma (OSCC) cases are reported annually worldwide. Despite development in OSCC management, the outcome is still unsatisfactory. Identification of new molecular markers may be of use in prevention, prognosis, and choice of an appropriate therapy. The intracellular molecular signalling pathway of phosphatidyl-inositol-3-kinase is involved in the process of cell growth, differentiation, migration, and survival. The main components of this pathway: PIK3CA (phosphatidylinositol-4,5-bisphosphate-3-kinase catalytic subunit α), PTEN (phosphatase and tensin homologue deleted on chromosome 10), and AKT (serine-threonine kinase) are potential objects of research when introducing new therapeutic agents. The aim of this paper is to evaluate the PIK3CA, PTEN, and AKT gene mutations as prognostic factors in OSCC and to describe their role in aggressive disease progression. This is crucial for oral cancer biology understanding and for indicating which direction new clinical treatments should take.
Collapse
Affiliation(s)
- Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdansk, Gdansk, Poland
| | - Aleksandra Sejda
- Department of Pathomorphology, University of Warmia and Mazury, Olsztyn, Poland
| | - Paulina Adamska
- Department of Oral Surgery, Medical University of Gdansk, Gdansk, Poland
| | - Giulia Marvaso
- Department of Radiotherapy, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | | | - Łukasz Adamski
- Department of Oral Surgery, Medical University of Gdansk, Gdansk, Poland
| | - Barbara A. Jereczek-Fossa
- Department of Radiotherapy, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Crezee T, Petrulea M, Piciu D, Jaeger M, Smit JWA, Plantinga TS, Georgescu CE, Netea-Maier R. Akt1 genetic variants confer increased susceptibility to thyroid cancer. Endocr Connect 2020; 9:1065-1074. [PMID: 33112820 PMCID: PMC7774771 DOI: 10.1530/ec-20-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/02/2020] [Indexed: 11/30/2022]
Abstract
The PI3K-Akt-mTOR pathway plays a central role in the development of non-medullary thyroid carcinoma (NMTC). Although somatic mutations have been identified in these genes in NMTC patients, the role of germline variants has not been investigated. Here, we selected frequently occurring genetic variants in AKT1, AKT2, AKT3, PIK3CA and MTOR and have assessed their effect on NMTC susceptibility, progression and clinical outcome in a Dutch discovery cohort (154 patients, 188 controls) and a Romanian validation cohort (159 patients, 260 controls). Significant associations with NMTC susceptibility were observed for AKT1 polymorphisms rs3803304, rs2494732 and rs2498804 in the Dutch discovery cohort, of which the AKT1 rs3803304 association was confirmed in the Romanian validation cohort. No associations were observed between PI3K-Akt-mTOR polymorphisms and clinical parameters including histology, TNM staging, treatment response and clinical outcome. Functionally, cells bearing the associated AKT1 rs3803304 risk allele exhibit increased levels of phosphorylated Akt protein, potentially leading to elevated signaling activity of the oncogenic Akt pathway. All together, germline encoded polymorphisms in the PI3K-Akt-mTOR pathway could represent important risk factors in development of NMTC.
Collapse
Affiliation(s)
- Thomas Crezee
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mirela Petrulea
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Doina Piciu
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Jaeger
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Nuclear Medicine and Endocrine Tumors, Institute of Oncology ‘Prof. Dr. Ion Chiricuta’, Cluj-Napoca, Romania
| | - Jan W A Smit
- Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theo S Plantinga
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Nuclear Medicine and Endocrine Tumors, Institute of Oncology ‘Prof. Dr. Ion Chiricuta’, Cluj-Napoca, Romania
| | - Carmen E Georgescu
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Endocrinology Clinic, Cluj County Emergency Hospital, Cluj-Napoca, Romania
| | - Romana Netea-Maier
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Nuclear Medicine and Endocrine Tumors, Institute of Oncology ‘Prof. Dr. Ion Chiricuta’, Cluj-Napoca, Romania
- Correspondence should be addressed to R Netea-Maier:
| |
Collapse
|
5
|
Allam L, Arrouchi H, Ghrifi F, El Khazraji A, Kandoussi I, Bendahou MA, El Amri H, El Absi M, Ibrahimi A. AKT1 Polymorphism (rs10138227) and Risk of Colorectal Cancer in Moroccan Population: A Case Control Study. Asian Pac J Cancer Prev 2020; 21:3165-3170. [PMID: 33247671 PMCID: PMC8033122 DOI: 10.31557/apjcp.2020.21.11.3165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND LMTK3 and AKT1 each have a role in carcinogenesis and tumor progression. The analysis of single nucleotide polymorphisms of AKT1 and LMTK3 could lead to more complete and accurate risk estimates for colorectal cancer. AIM We evaluated the association between single nucleotide polymorphisms (SNPs) of AKT1 and LMTK3 and the risk of colorectal cancer in a case-control study in Moroccan population. METHODS Genomic DNA from 70 colorectal cancer patients and 50 healthy control subjects was extracted from whole blood. Genotyping was performed by direct sequencing after polymerase chain reactions for the 7 SNPs (AKT1rs1130214G/T, AKT1rs10138227C/T, AKT1rs3730358C/T, AKT1rs1000559097G/A, AKT1rs2494737A/T, LMTK3rs8108419G/A, and LMTK3rs9989661A/G.). Study subjects provided detailed information during the collection. All P values come from bilateral tests. RESULTS In the logistic regression analysis, a significantly high risk of colorectal cancer was associated with TC/TT genotypes of rs10138227 with adjusted odds ratio [OR] equal to 2.82 and 95% confidence interval [CI] of 1.15 to 6.91. CONCLUSION Our results suggest that the SNP AKT1rs10138227 could affect susceptibility to CRC, probably by modulating the transcriptional activity of AKT1. However, larger independent studies are needed to validate our results.
Collapse
Affiliation(s)
- Loubna Allam
- Laboratoire De Biotechnologie (MedBiotech), Faculté De Medecine Et De Pharmacie De Rabat, Université Mohamed V De Rabat, Rabat, Maroc, Morocco.,Instituts Des Analyses Génétique De La Gendarmerie Royale De Rabat, Maroc, Morocco
| | - Housna Arrouchi
- Laboratoire De Biotechnologie (MedBiotech), Faculté De Medecine Et De Pharmacie De Rabat, Université Mohamed V De Rabat, Rabat, Maroc, Morocco
| | - Fatima Ghrifi
- Laboratoire De Biotechnologie (MedBiotech), Faculté De Medecine Et De Pharmacie De Rabat, Université Mohamed V De Rabat, Rabat, Maroc, Morocco
| | - Abdelhak El Khazraji
- Laboratoire De Biotechnologie (MedBiotech), Faculté De Medecine Et De Pharmacie De Rabat, Université Mohamed V De Rabat, Rabat, Maroc, Morocco
| | - Ilham Kandoussi
- Laboratoire De Biotechnologie (MedBiotech), Faculté De Medecine Et De Pharmacie De Rabat, Université Mohamed V De Rabat, Rabat, Maroc, Morocco
| | - Mohammed Amine Bendahou
- Biotechnology Laboratory (Medbiotech), Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morroco
| | - Hamid El Amri
- Instituts Des Analyses Génétique De La Gendarmerie Royale De Rabat, Maroc, Morocco
| | - Mohamed El Absi
- Faculté De Medecine Et De Pharmacie De Rabat, Université Mohamed V Rabat, Rabaat Maroc, Morocco
| | - Azeddine Ibrahimi
- Laboratoire De Biotechnologie (MedBiotech), Faculté De Medecine Et De Pharmacie De Rabat, Université Mohamed V De Rabat, Rabat, Maroc, Morocco
| |
Collapse
|
6
|
Maruei‐Milan R, Saravani M, Heidari Z, Asadi‐Tarani M, Salimi S. Effects of the
MTOR
and
AKT1
genes polymorphisms on papillary thyroid cancer development. IUBMB Life 2020; 72:2601-2610. [DOI: 10.1002/iub.2388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/01/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Rostam Maruei‐Milan
- Department of Clinical Biochemistry, School of Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Mohsen Saravani
- Department of Clinical Biochemistry, School of Medicine Zahedan University of Medical Sciences Zahedan Iran
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute Zahedan University of Medical Sciences Zahedan Iran
| | - Zahra Heidari
- Department of Internal Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Mina Asadi‐Tarani
- Department of Clinical Biochemistry, School of Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine Zahedan University of Medical Sciences Zahedan Iran
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute Zahedan University of Medical Sciences Zahedan Iran
| |
Collapse
|
7
|
Zhao J, Zeng Z. Combined effects of AKT serine/threonine kinase 1 polymorphisms and environment on congenital heart disease risk: A case-control study. Medicine (Baltimore) 2020; 99:e20400. [PMID: 32590727 PMCID: PMC7328912 DOI: 10.1097/md.0000000000020400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study aimed to explore the combined association between AKT serine/threonine kinase 1 (AKT1) polymorphisms and congenital heart disease (CHD) risk, meanwhile, the role of AKT1 single polymorphism on CHD was also analyzed.In the first, AKT1 polymorphisms were genotyped in 130 CHD patients and 145 healthy people with the way of polymerase chain reaction-direct sequencing. The clinical data and genotypes, alleles between 2 groups were compared by χ test and the genotype distributions in the control group were checked by Hardy-Weinberg equilibrium. The relative risk strength of disease based on genetic variant was revealed using odds ratio (OR) with 95% confidence interval (95%CI).In 3 polymorphisms of AKT1 (rs1130214, rs2494732, rs3803300), the GT/TT genotype of rs1130214 in cases and controls had a significant frequency difference (P = .04) and was 1.71 times risk developing CHD, compared with AA (OR = 1.71, 95%CI = 1.02-2.86), and T allele had 1.63 times risk for carriers (OR = 1.63, 95%CI = 1.05-2.54). Similarly, both rs3803300 GG genotype and G allele had obvious differences between case and control groups (P < .05) and it was closely associated with CHD susceptibility. At the same time, the combined effects of rs1130214, rs3803300 and family history, smoking were found in our study.AKT1 rs1130214, rs3803300 polymorphisms are associated with the increased susceptibility to CHD. Environmental factors are found the interaction with AKT1 polymorphisms. Further study is needed to verify this conclusion.
Collapse
Affiliation(s)
- Jianxun Zhao
- Department of Cardiology
- Department of Cardiology, Chengdu Shang Jin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhi Zeng
- Department of Cardiology
- Department of Cardiology, Chengdu Shang Jin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
8
|
Damani Shah H, Saranath D, Pradhan S. Single nucleotide polymorphisms in transcription factor genes associated with susceptibility to oral cancer. J Cell Biochem 2019; 121:1050-1060. [PMID: 31452252 DOI: 10.1002/jcb.29341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022]
Abstract
Oral cancer is a major public health concern in the Asian countries predominated by India which accounts for 33.81% of the annual global oral cancer burden. The well-established high-risk factors associated with oral cancer include tobacco, areca nut, alcohol consumption, and high-risk human papilloma virus types 16/18. Additionally, in the past two decades, the critical role of the genomic constitution of individuals in oral cancer susceptibility has emerged. Accumulating evidence indicates the association of several single nucleotide polymorphisms (SNPs) with oral cancer risk. Thus in the current study, we assessed the association of thirteen SNPs in seven transcription factor genes along with HBB (a control SNP) to identify high-risk genotypes associated with increased oral cancer risk in an Indian cohort of tobacco habitués. Fourteen SNPs were investigated in 500 patients with oral cancer and 500 clinically healthy long-term tobacco users as controls of Indian ethnicity. Allelic discrimination real-time polymerase chain reaction was the method of choice for genotyping the samples. Logistic regression analysis was performed and the association of SNPs with oral cancer risk was estimated using odds ratio (OR) and 95% confidence interval (CI). We observed five SNPs-rs2051526 (ETV6), rs6021247 (NFATC2), rs3757769 (SND1), rs7085532 (TCF7L2), and rs7778413 (SND1) indicating increased oral cancer risk with OR ranging from 1.61 to 34.60. Further, as a proof of concept, the coinheritance of high-risk genotypes in rs6021247 (NFATC2) GG (OR, 2.77; CI, 2.09-3.69) and rs7778413 (SND1) CC (OR, 34.60; CI, 17.32-69.13) reflected further increase in the risk with OR-49.94 (CI, 16.25-153.48). The present study indicates the association of transcription factor SNPs with increased oral cancer risk constituting "predictive biomarkers" in oral cancers.
Collapse
Affiliation(s)
- Hetal Damani Shah
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| | - Sultan Pradhan
- Department of Surgical Oncology, Prince Aly Khan Hospital, Mumbai, India
| |
Collapse
|
9
|
Wang X, Bai Y, Han Y, Meng J, Liu H. Downregulation of GBAS regulates oral squamous cell carcinoma proliferation and apoptosis via the p53 signaling pathway. Onco Targets Ther 2019; 12:3729-3742. [PMID: 31190874 PMCID: PMC6529179 DOI: 10.2147/ott.s207930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose: Oral squamous cell carcinoma (OSCC) is the most common and severe type of head and neck malignancy. The mechanisms by which OSCC arises depend on changes in a number of different factors and genes and the clinicopathological stage of the tumors. Better understanding the possible mechanisms of OSCC would help to identify a new target for molecular targeted therapy. The current study was focused on elucidating the significance of the glioblastoma-amplified sequence (GBAS) on malignant behaviors in OSCC, including proliferation and apoptosis. Patients and methods: In this study, we measured the levels of mRNA in OSCC and normal oral tissue samples using Affymetrix microarrays. We examined GBAS expression in OSCC tissues and the effect of GBAS knockdown on cell proliferation and apoptosis in vitro and in vivo. The mechanisms underlying GBAS were investigated. Results: In the present study, GBAS expression was substantially elevated in the majority of tested OSCC tissues. Further, knockdown of GBAS using lentiviral-delivered shRNA in cells had significant effects on cell proliferation, apoptosis and the cell cycle. A xenograft model was also used to assess the tumorigenicity of the GBAS knockdown on OSCC cells in vivo. Mechanistically, GBAS activated p53 signaling by regulating the mRNA and protein expression of CHEK1, AKT1, AKT2 and Bax. Finally, we also investigated the expression of GBAS in patients with OSCC, and the data revealed that GBAS expression was correlated with the rates of relapse and tumor grade. Conclusion: Our studies provide evidence that GBAS regulates OSCC cell proliferation and apoptosis via p53 signaling, which may be a candidate biomarker for the prognosis and treatment of OSCC.
Collapse
Affiliation(s)
- Xing Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Yuting Bai
- Department of Oromaxillofacial-Head and Neck Surgery, Affiliated Xuzhou Hospital, College of Medicine, Southeast University, Xuzhou, JiangSu, People's Republic of China.,Department of Oral Medicine, Xuzhou Medical University, Xuzhou, JiangSu, People's Republic of China
| | - Ying Han
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Jian Meng
- Department of Oromaxillofacial-Head and Neck Surgery, Affiliated Xuzhou Hospital, College of Medicine, Southeast University, Xuzhou, JiangSu, People's Republic of China
| | - Hongwei Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
10
|
Mutational Analysis of Oncogenic AKT1 Gene Associated with Breast Cancer Risk in the High Altitude Ecuadorian Mestizo Population. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7463832. [PMID: 30065942 PMCID: PMC6051326 DOI: 10.1155/2018/7463832] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 01/08/2023]
Abstract
Breast cancer is the leading cause of cancer-related death among women worldwide. AKT1 encodes the kinase B alpha protein. The rs121434592, rs12881616, rs11555432, rs11555431, rs2494732, and rs3803304 single nucleotide polymorphisms have been identified in the AKT1 kinase gene. Activated AKT1 phosphorylates downstream substrates regulating cell growth, metabolism, apoptosis, angiogenesis, and drug responses. It is essential to know how breast cancer risk is associated with histopathological and immunohistochemical characteristics and genotype polymorphisms in a high altitude Ecuadorian mestizo population. This is a retrospective case-control study. DNA was extracted from 185 healthy and 91 affected women who live 2,800 meters above sea level. Genotypes were determined by genomic sequencing. We found a possible association between the noncoding intronic variant rs3803304 and breast cancer risk development: GG (odds ratio [OR] = 5.2; 95% confidence interval [CI] = 1.3-20.9; P ≤ 0.05; Q > 0.05). Regarding pathologic characteristics, we found significant risk between estrogen receptor, progesterone receptor, and HER2 status and molecular subtypes (P ≤ 0.001; Q ≤ 0.05). On the other hand, we did not find risk between variants and histopathological characteristics. Despite the small sample size, we found that the intronic variant, AKT1 rs3803304, may act as a predictive biomarker in the risk of developing breast cancer in the high altitude Ecuadorian mestizo population.
Collapse
|
11
|
Masson JJR, Cherry CL, Murphy NM, Sada-Ovalle I, Hussain T, Palchaudhuri R, Martinson J, Landay AL, Billah B, Crowe SM, Palmer CS. Polymorphism rs1385129 Within Glut1 Gene SLC2A1 Is Linked to Poor CD4+ T Cell Recovery in Antiretroviral-Treated HIV+ Individuals. Front Immunol 2018; 9:900. [PMID: 29867928 PMCID: PMC5966582 DOI: 10.3389/fimmu.2018.00900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/11/2018] [Indexed: 01/14/2023] Open
Abstract
Untreated HIV infection is associated with progressive CD4+ T cell depletion, which is generally recovered with combination antiretroviral therapy (cART). However, a significant proportion of cART-treated individuals have poor CD4+ T cell reconstitution. We investigated associations between HIV disease progression and CD4+ T cell glucose transporter-1 (Glut1) expression. We also investigated the association between these variables and specific single nucleotide polymorphisms (SNPs) within the Glut1 regulatory gene AKT (rs1130214, rs2494732, rs1130233, and rs3730358) and in the Glut1-expressing gene SLC2A1 (rs1385129 and rs841853) and antisense RNA 1 region SLC2A1-AS1 (rs710218). High CD4+Glut1+ T cell percentage is associated with rapid CD4+ T cell decline in HIV-positive treatment-naïve individuals and poor T cell recovery in HIV-positive individuals on cART. Evidence suggests that poor CD4+ T cell recovery in treated HIV-positive individuals is linked to the homozygous genotype (GG) associated with SLC2A1 SNP rs1385129 when compared to those with a recessive allele (GA/AA) (odds ratio = 4.67; P = 0.04). Furthermore, poor response to therapy is less likely among Australian participants when compared against American participants (odds ratio: 0.12; P = 0.01) despite there being no difference in prevalence of a specific genotype for any of the SNPs analyzed between nationalities. Finally, CD4+Glut1+ T cell percentage is elevated among those with a homozygous dominant genotype for SNPs rs1385129 (GG) and rs710218 (AA) when compared to those with a recessive allele (GA/AA and AT/TT respectively) (P < 0.04). The heterozygous genotype associated with AKT SNP 1130214 (GT) had a higher CD4+Glut1+ T cell percentage when compared to the dominant homozygous genotype (GG) (P = 0.0068). The frequency of circulating CD4+Glut1+ T cells and the rs1385129 SLC2A1 SNP may predict the rate of HIV disease progression and CD4+ T cell recovery in untreated and treated infection, respectively.
Collapse
Affiliation(s)
- Jesse J R Masson
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Catherine L Cherry
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicholas M Murphy
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Preimplantation Genetic Diagnosis, Monash IVF, Melbourne, VIC, Australia
| | - Isabel Sada-Ovalle
- Unidad de Investigación Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Tabinda Hussain
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Riya Palchaudhuri
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Jeffrey Martinson
- Department of Immunology-Microbiology, Rush University Medical Centre, Chicago, IL, United States
| | - Alan L Landay
- Department of Immunology-Microbiology, Rush University Medical Centre, Chicago, IL, United States
| | - Baki Billah
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Bizhani F, Hashemi M, Danesh H, Nouralizadeh A, Narouie B, Bahari G, Ghavami S. Association between single nucleotide polymorphisms in the PI3K/AKT/mTOR pathway and bladder cancer risk in a sample of Iranian population. EXCLI JOURNAL 2018; 17:3-13. [PMID: 29383014 PMCID: PMC5780628 DOI: 10.17179/excli2017-329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022]
Abstract
In the past few years several investigations have focused on the role of PI3K/AKT/mTOR pathway and its deregulations in different cancers. This study aimed to examine genetic polymorphisms of this pathway in bladder cancer (BC). In this case-control study, 235 patients with pathologically confirmed bladder cancer and 254 control subjects were examined. PIK3CA, AKT1 and mTOR variants were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The findings proposed that the PIK3CA rs6443624 SNP significantly decreased the risk of BC (OR=0.44, 95 % CI=0.30-0.65, p<0.0001 CA vs CC; OR=0.35, 95 % CI=0.16-0.78, p=0.0107, AA vs CC; OR=0.60, 95 % CI=0.46-0.79, p=0.0002, A vs T). The AKT1 rs2498801 variant is associated with a decreased risk of BC (OR=0.57, 95 % CI=0.39-0.82, p=0.003, AG vs AA; OR=0.74, 95 % CI=0.56-0.97, p=0.032, G vs A) while, AKT1 rs1130233 polymorphism considerably increased the risk of BC (OR=3.70, 95 % CI=2.52-5.43, p<0.0001, GA vs GG; OR=5.81, 95 % CI=1.53-21.97, p=0.010, AA vs GG; OR=2.71, 95 % CI=1.98-3.70, p<0.0001, A vs G). Additionally, mTOR rs2295080 variant notably increased the risk of BC (OR=2.25, 95 % CI=1.50-3.38, p<0.0001, GT vs GG; OR=4.75, 95 % CI=2.80-8.06, p<0.0001, TT vs GG; OR=3.10, 95 % CI=2.34-4.10, p<0.0001, T vs G). None of the other examined polymorphisms (AKT1 rs1130214, AKT1 rs3730358, mTOR rs1883965) revealed significant association with BC. In conclusion, our findings suggest that PIK3CA rs6443624, AKT1 rs2498801, AKT1 rs1130233, as well mTOR rs2295080 polymorphism may be related to bladder cancer development in a sample of Iranian population. Validation of our findings in larger sample sizes of different ethnicities would provide evidence on the role of variants of PI3K/AKT/mTOR pathway in developing BC.
Collapse
Affiliation(s)
- Fatemeh Bizhani
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hiva Danesh
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Akbar Nouralizadeh
- Urology and Nephrology Research Center; Department of Urology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Narouie
- Urology and Nephrology Research Center; Department of Urology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.,Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
D'Souza W, Saranath D. OMICS, Oral Cancer Molecular Landscapes, and Clinical Practice. ACTA ACUST UNITED AC 2017; 21:689-703. [DOI: 10.1089/omi.2017.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wendy D'Souza
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| |
Collapse
|
14
|
Sharma V, Nandan A, Sharma AK, Singh H, Bharadwaj M, Sinha DN, Mehrotra R. Signature of genetic associations in oral cancer. Tumour Biol 2017; 39:1010428317725923. [DOI: 10.1177/1010428317725923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Vishwas Sharma
- Department of Health Research, National Institute of Cancer Prevention and Research (NICPR), Noida, India
| | - Amrita Nandan
- Society for Life Science and Human Health, Allahabad, India
| | - Amitesh Kumar Sharma
- Data Management Laboratory, National Institute of Cancer Prevention and Research (NICPR), Noida, India
- Department of Bioinformatics, Indian Council of Medical Research, New Delhi, India
| | - Harpreet Singh
- Data Management Laboratory, National Institute of Cancer Prevention and Research (NICPR), Noida, India
- Department of Bioinformatics, Indian Council of Medical Research, New Delhi, India
| | - Mausumi Bharadwaj
- Department of Health Research, National Institute of Cancer Prevention and Research (NICPR), Noida, India
- Division of Molecular Genetics & Biochemistry
| | - Dhirendra Narain Sinha
- WHO FCTC Global Knowledge Hub on Smokeless Tobacco, National Institute of Cancer Prevention and Research (NICPR), Noida, India
| | - Ravi Mehrotra
- Department of Health Research, National Institute of Cancer Prevention and Research (NICPR), Noida, India
- Data Management Laboratory, National Institute of Cancer Prevention and Research (NICPR), Noida, India
| |
Collapse
|
15
|
Guo Q, Lu T, Chen Y, Su Y, Zheng Y, Chen Z, Chen C, Lin S, Pan J, Yuan X. Genetic variations in the PI3K-PTEN-AKT-mTOR pathway are associated with distant metastasis in nasopharyngeal carcinoma patients treated with intensity-modulated radiation therapy. Sci Rep 2016; 6:37576. [PMID: 27876891 PMCID: PMC5120316 DOI: 10.1038/srep37576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022] Open
Abstract
Distant metastasis is the primary failure pattern of nasopharyngeal carcinoma(NPC) in intensity-modulated radiation therapy(IMRT) era. This study was conducted to find the impact of genetic variations in the phosphatidylinositol 3-kinase(PI3K)/phosphatase and tensin homologue(PTEN)/v-akt murine thymoma viral oncogene homologue(AKT)/mammalian target of rapamycin(mTOR) pathway on the risk of distant metastasis in NPC. We genotyped 16 single-nucleotide polymorphisms(SNPs) in five core genes in this pathway from 496 patients treated by IMRT with or without chemotherapy. The relationships between genetic polymorphisms and distant progression were evaluated. We observed that two loci in the AKT1 gene(rs3803300 and rs2494738 alone or combined) were associated with prognosis, with patients carrying at least one variant allele had significantly reduced risk of distant failure, especially in N2-3 group. In addition, we found that genetic variation may had some joint effect with N classification in recursive-partitioning analysis(RPA) analysis, with which patients were stratified into four different risk subgroups (RPA model): RPA1(low risk), RPA2(moderate risk), RPA3(high risk) and RPA4(highest risk). Our findings suggested that genetic variations within the PI3K signaling pathway modulate the development and invasion of NPC patients. Further research is needed to replicate the study in other centers and races, and to unravel the functional significance of these polymorphisms.
Collapse
Affiliation(s)
- Qiaojuan Guo
- Shengli Clinical Medicine College, Fujian Medical University, Fuzhou, Fujian Province, 350014, China
| | - Tianzhu Lu
- Shengli Clinical Medicine College, Fujian Medical University, Fuzhou, Fujian Province, 350014, China
| | - Yan Chen
- Shengli Clinical Medicine College, Fujian Medical University, Fuzhou, Fujian Province, 350014, China.,Department of Clinical Laboratory, Fujian Provincial Cancer Hospital, Fuzhou, Fujian Province, 350014, China
| | - Ying Su
- Shengli Clinical Medicine College, Fujian Medical University, Fuzhou, Fujian Province, 350014, China.,Department of Radiation Biology Laboratory, Fujian Provincial Cancer Hospital, Fuzhou, Fujian Province, 350014, China
| | - Yuhong Zheng
- Shengli Clinical Medicine College, Fujian Medical University, Fuzhou, Fujian Province, 350014, China.,Department of Clinical Laboratory, Fujian Provincial Cancer Hospital, Fuzhou, Fujian Province, 350014, China
| | - Zeng Chen
- Shengli Clinical Medicine College, Fujian Medical University, Fuzhou, Fujian Province, 350014, China.,Department of Radiation Biology Laboratory, Fujian Provincial Cancer Hospital, Fuzhou, Fujian Province, 350014, China
| | - Chao Chen
- Shengli Clinical Medicine College, Fujian Medical University, Fuzhou, Fujian Province, 350014, China.,Department of Radiation Biology Laboratory, Fujian Provincial Cancer Hospital, Fuzhou, Fujian Province, 350014, China
| | - Shaojun Lin
- Shengli Clinical Medicine College, Fujian Medical University, Fuzhou, Fujian Province, 350014, China.,Department of Radiation Oncology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian Province, 350014, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, 350014, China
| | - Jianji Pan
- Shengli Clinical Medicine College, Fujian Medical University, Fuzhou, Fujian Province, 350014, China.,Department of Radiation Oncology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian Province, 350014, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, 350014, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| |
Collapse
|
16
|
Multani S, Saranath D. Genotypic distribution of single nucleotide polymorphisms in oral cancer: global scene. Tumour Biol 2016; 37:14501-14512. [PMID: 27651159 DOI: 10.1007/s13277-016-5322-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022] Open
Abstract
Globocan 2012 reports the global oral cancer incidence of 300,373 new oral cancer cases annually, contributing to 2.1 % of the world cancer burden. The major well-established risk factors for oral cancer include tobacco, betel/areca nut, alcohol and high-risk oncogenic human papilloma virus (HPV) 16/18. However, only 5-10 % of individuals with high-risk lifestyle develop oral cancer. Thus, genomic variants in individuals represented as single nucleotide polymorphisms (SNPs) influence susceptibility to oral cancer. With a view to understanding the role of genomic variants in oral cancer, we reviewed SNPs in case-control studies with a minimum of 100 cases and 100 controls. PubMed and HuGE navigator search engines were used to obtain data published from 1990 to 2015, which identified 67 articles investigating the role of SNPs in oral cancer. Single publications reported 93 SNPs in 55 genes, with 34 SNPs associated with a risk of oral cancer. Meta-analysis of data in multiple studies defined nine SNPs associated with a risk of oral cancer. The genes were associated with critical functions deregulated in cancers, including cell proliferation, immune function, inflammation, transcription, DNA repair and xenobiotic metabolism.
Collapse
Affiliation(s)
- Shaleen Multani
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Mumbai, Maharashtra, 400056, India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
17
|
Zhang X, Liu N, Ma D, Liu L, Jiang L, Zhou Y, Zeng X, Li J, Chen Q. Receptor for activated C kinase 1 (RACK1) promotes the progression of OSCC via the AKT/mTOR pathway. Int J Oncol 2016; 49:539-48. [DOI: 10.3892/ijo.2016.3562] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/04/2016] [Indexed: 11/05/2022] Open
|
18
|
Granata S, Dalla Gassa A, Carraro A, Brunelli M, Stallone G, Lupo A, Zaza G. Sirolimus and Everolimus Pathway: Reviewing Candidate Genes Influencing Their Intracellular Effects. Int J Mol Sci 2016; 17:ijms17050735. [PMID: 27187382 PMCID: PMC4881557 DOI: 10.3390/ijms17050735] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/21/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Sirolimus (SRL) and everolimus (EVR) are mammalian targets of rapamycin inhibitors (mTOR-I) largely employed in renal transplantation and oncology as immunosuppressive/antiproliferative agents. SRL was the first mTOR-I produced by the bacterium Streptomyces hygroscopicus and approved for several medical purposes. EVR, derived from SRL, contains a 2-hydroxy-ethyl chain in the 40th position that makes the drug more hydrophilic than SRL and increases oral bioavailability. Their main mechanism of action is the inhibition of the mTOR complex 1 and the regulation of factors involved in a several crucial cellular functions including: protein synthesis, regulation of angiogenesis, lipid biosynthesis, mitochondrial biogenesis and function, cell cycle, and autophagy. Most of the proteins/enzymes belonging to the aforementioned biological processes are encoded by numerous and tightly regulated genes. However, at the moment, the polygenic influence on SRL/EVR cellular effects is still not completely defined, and its comprehension represents a key challenge for researchers. Therefore, to obtain a complete picture of the cellular network connected to SRL/EVR, we decided to review major evidences available in the literature regarding the genetic influence on mTOR-I biology/pharmacology and to build, for the first time, a useful and specific “SRL/EVR genes-focused pathway”, possibly employable as a starting point for future in-depth research projects.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| | | | - Amedeo Carraro
- Liver Transplant Unit, Department of General Surgery and Odontoiatrics, University/Hospital of Verona, 37126 Verona, Italy.
| | - Matteo Brunelli
- Department of Pathology and Diagnostics, University of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy.
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, University of Foggia, 71122 Foggia, Italy.
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| |
Collapse
|
19
|
Zhu J, Wang M, He J, Zhu M, Wang JC, Jin L, Wang XF, Yang YJ, Xiang JQ, Wei Q. Polymorphisms in the AKT1 and AKT2 genes and oesophageal squamous cell carcinoma risk in an Eastern Chinese population. J Cell Mol Med 2016; 20:666-77. [PMID: 26828791 PMCID: PMC5126231 DOI: 10.1111/jcmm.12750] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/02/2015] [Indexed: 02/05/2023] Open
Abstract
Ethnic Han Chinese are at high risk of developing oesophageal squamous cell carcinoma (ESCC). Aberrant activation of the AKT signalling pathway is involved in many cancers, including ESCC. Some single nucleotide polymorphisms (SNPs) in genes involved in this pathway may contribute to ESCC susceptibility. We selected five potentially functional SNPs in AKT1 (rs2494750, rs2494752 and rs10138277) and AKT2 (rs7254617 and rs2304186) genes and investigated their associations with ESCC risk in 1117 ESCC cases and 1096 controls in an Eastern Chinese population. None of individual SNPs exhibited an association with ESCC risk. However, the combined analysis of three AKT1 SNPs suggested that individuals carrying one of AKT1 variant genotypes had a decreased ESCC risk [adjusted odds ratio (OR) = 0.60, 95% CI = 0.42-0.87]. Further stratified analysis found that AKT1 rs2294750 SNP was associated with significantly decreased ESCC risk among women (adjusted OR = 0.63, 95% CI = 0.43-0.94) and non-drinkers (OR = 0.79, 95% CI = 0.64-0.99). Similar protective effects on women (adjusted OR = 0.56, 95% CI = 0.37-0.83) and non-drinker (adjusted OR = 0.75, 95% CI = 0.60-0.94) were also observed for the combined genotypes of AKT1 SNPs. Consistently, logistic regression analysis indicated significant gene-gene interactions among three AKT1 SNPs (P < 0.015). A three-AKT1 SNP haplotype (C-A-C) showed a significant association with a decreased ESCC risk (adjusted OR = 0.70, 95% CI = 0.52-0.94). Multifactor dimensionality reduction analysis confirmed a high-order gene-environment interaction in ESCC risk. Overall, we found that three AKT1 SNPs might confer protection against ESCC risk; nevertheless, these effects may be dependent on other risk factors. Our results provided evidence of important gene-environment interplay in ESCC carcinogenesis.
Collapse
Affiliation(s)
- Jinhong Zhu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Mengyun Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Meiling Zhu
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jiu-Cun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xiao-Feng Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Ya-Jun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Jia-Qing Xiang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qingyi Wei
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
20
|
Ruan Y, Jiang J, Guo L, Li Y, Huang H, Shen L, Luan M, Li M, Du H, Ma C, He L, Zhang X, Qin S. Genetic Association of Curative and Adverse Reactions to Tyrosine Kinase Inhibitors in Chinese advanced Non-Small Cell Lung Cancer patients. Sci Rep 2016; 6:23368. [PMID: 26988277 PMCID: PMC4796893 DOI: 10.1038/srep23368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/04/2016] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) Tyrosine kinase inhibitor (TKI) is an effective targeted therapy for advanced non-small cell lung cancer (NSCLC) but also causes adverse drug reactions (ADRs) e.g., skin rash and diarrhea. SNPs in the EGFR signal pathway, drug metabolism/ transport pathways and miRNA might contribute to the interpersonal difference in ADRs but biomarkers for therapeutic responses and ADRs to TKIs in Chinese population are yet to be fully investigated. We recruited 226 Chinese advanced NSCLC patients who received TKIs erlotinib, gefitinib and icotinib hydrochloride and systematically studied the genetic factors associated with therapeutic responses and ADRs. Rs884225 (T > C) in EGFR 3' UTR was significantly associated with lower risk of ADRs to erlotinib (p value = 0.0010, adjusted p value = 0.042). A multivariant interaction four-SNP model (rs884225 in EGFR 3'UTR, rs7787082 in ABCB1 intron, rs38845 in MET intron and rs3803300 in AKT1 5'UTR) was associated with ADRs in general and the more specific drug induced skin injury. The SNPs associated with both therapeutic responses and ADRs indicates they might share a common genetic basis. Our study provided potential biomarkers and clues for further research of biomarkers for therapeutic responses and ADRs in Chinese NSCLC patients.
Collapse
Affiliation(s)
- Yunfeng Ruan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liang Guo
- The Fourth Hospital of Jinan City, Taishan Medical College, Jinan, China
| | - Yan Li
- Centre for Genomic Sciences, the University of Hong Kong, Hong Kong, SAR, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02142, U.S.A.
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, U.S.A.
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mengqi Luan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huihui Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Cheng Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaoqing Zhang
- Department of Pharmacy, Shanghai pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Piao Y, Li Y, Xu Q, Liu JW, Xing CZ, Xie XD, Yuan Y. Association of MTOR and AKT Gene Polymorphisms with Susceptibility and Survival of Gastric Cancer. PLoS One 2015; 10:e0136447. [PMID: 26317520 PMCID: PMC4552869 DOI: 10.1371/journal.pone.0136447] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022] Open
Abstract
Background The phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, AKT)/mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in angiogenesis and cell growth, proliferation, metabolism, migration, differentiation, and apoptosis. Genetic diversity in key factors of this pathway may influence protein function and signal transduction, contributing to disease initiation and progression. Studies suggest that MTOR rs1064261 and AKT rs1130233 polymorphisms are associated with risk and/or prognosis of multiple cancer types. However, this relationship with gastric cancer (GC) remains unclear. The aim of this study was to investigate the role of MTOR and AKT polymorphisms in the risk and prognosis of GC. Methods The Sequenom MassARRAY platform was used to genotype 1842 individuals for MTOR rs1064261 T→C and AKT rs1130233 G→A polymorphisms. ELISA was used to detect Helicobacter pylori antibodies in serum. Immunohistochemical analysis was used to detect total and phosphorylated MTOR and AKT proteins. Results The MTOR rs1064261 (TC+CC) genotype and the AKT rs1130233 (GA+AA) genotype were associated with increased risk of GC in men (P = 0.049, P = 0.030). In H. pylori-negative individuals, the AKT rs1130233 GA and (GA+AA) genotypes were related to increased risk of atrophic gastritis (AG; P = 0.012, P = 0.024). Notably, the AKT rs1130233 (GA+AA) genotype demonstrated significant interactions with H. pylori in disease progression from healthy controls (CON) to AG (P = 0.013) and from AG to GC (P = 0.049). Additionally, for individuals with the AKT rs1130233 variant, those in the H. pylori-positive group had higher levels of phosphorylated AKT (p-AKT) expression. The AKT rs1130233 genotype was found to be associated with clinicopathological parameters including lymph node metastasis and alcohol drinking (P<0.05). Conclusion MTOR rs1064261and AKT rs1130233 polymorphisms were associated with increased GC risk in males and increased AG risk in H. pylori-negative individuals. A significant interaction existed between the AKT rs1130233 genotype and H. pylori infection in CON→AG→GC disease progression. The AKT rs1130233 genotype influenced p-AKT protein expression in H. pylori-infected individuals.
Collapse
Affiliation(s)
- Ying Piao
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, People’s Republic of China
- Oncology Department, General Hospital of Shenyang Military Region, Shenyang, Liaoning, People’s Republic of China
| | - Ying Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, People’s Republic of China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, People’s Republic of China
| | - Jing-wei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, People’s Republic of China
| | - Cheng-zhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, People’s Republic of China
| | - Xiao-dong Xie
- Oncology Department, General Hospital of Shenyang Military Region, Shenyang, Liaoning, People’s Republic of China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, People’s Republic of China
- * E-mail:
| |
Collapse
|
22
|
Zhang X, Fan J, Li Y, Lin S, Shu P, Ni J, Qin S, Zhang Z. Polymorphisms in epidermal growth factor receptor (EGFR) and AKT1 as possible predictors of clinical outcome in advanced non-small-cell lung cancer patients treated with EGFR tyrosine kinase inhibitors. Tumour Biol 2015; 37:1061-9. [PMID: 26269114 DOI: 10.1007/s13277-015-3893-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/05/2015] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the association of epidermal growth factor receptor (EGFR) gene polymorphism and AKT1 polymorphism with the clinical outcomes in advanced non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (EGFR-TKIs). The clinical outcome and the survival of NSCLC of 230 patients after treatment with EGFR-TKIs were measured. The rs712829, rs1468727 of the EGFR gene and rs1130214 of the AKT1 gene from peripheral blood cell were detected by a multiplexed single nucleotide polymorphism (SNP) MassEXTEND assay. The relationship between genetic polymorphisms and clinical outcomes of treatment with EGFR-TKIs was analyzed. The response rates and the disease control rate of patients with genotype GG, GT, and TT in EGFR rs712829 were statistically very significant difference(19.7 vs 36.1 vs 50.0 %, P = 0.016 and 57.7 vs 77.8 vs 83.3 %, P = 0.026, respectively). Better disease control was also achieved in patients with the GG genotype of AKT1 rs1130214 than those with the GT and TT genotypes (65.6 vs. 48.7 %, P = 0.043). Patients carrying the EGFR rs712829 TT genotype had significantly longer PFS and OS than those with the GT or GG genotypes (9.0 vs. 7.0 vs. 5.0 months, P = 0.001 and 13.1 vs. 14.6 vs. 18.8 months, P = 0.008, respectively). In addition, patients carrying the AKT1 rs1130214 GG genotype also had significantly longer PFS than those with the GT and TT genotypes (5.5 vs. 4.5 months, P = 0.008). EGFR rs712829 polymorphism and AKT1 rs1130214 could influence the response to EGFR-TKIs therapy in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junwei Fan
- Department of Hepatobiliary Pancreatic Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yuping Li
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengtao Lin
- Department of Hepatobiliary Pancreatic Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Ping Shu
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Ni
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Yangpu District Zhengmin Road, Shanghai, China
| | - Shengying Qin
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhemin Zhang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Yangpu District Zhengmin Road, Shanghai, China.
| |
Collapse
|