1
|
Hiew TN. Dr. Paul W. S. Heng, a guru in pharmaceutical processing research. Int J Pharm 2024; 666:124816. [PMID: 39389476 DOI: 10.1016/j.ijpharm.2024.124816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Affiliation(s)
- Tze Ning Hiew
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States.
| |
Collapse
|
2
|
Alhallak M, Karpukhina N, Patel M. Permeability of triamcinolone acetonide, released from mucoadhesive films, through a buccal mucosa-mimetic barrier: Permeapad™. Dent Mater 2024; 40:1372-1377. [PMID: 38902145 DOI: 10.1016/j.dental.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVES The permeability of triamcinolone acetonide (TA), from bilayer mucoadhesive buccal films, through a biomimetic membrane, Permeapad™, was investigated employing Franz diffusion cell. The delivery systems composition and ethyl cellulose (EC) backing layer, on drug permeability, were assessed. METHODS Three TA-loaded films were tested; hydroxypropyl methylcellulose (HPMC K4M; bilayer [F1] and monolayer), HPMC K4M/Polyvinylpyrrolidone (PVP): 90/10 [F2], and HPMC K15M film [F3]. All films contained propylene glycol (PG-plasticiser). TA solution alone was used as a control. TA permeability via a Permeapad™ barrier, simulating buccal mucosa, was assessed over 8 h using a Franz diffusion cell. TA permeated into the receptor compartment, released in the donor compartment, and located on/within the Permeapad™ barrier were analysed using UV-spectrophotometer. RESULTS 45.7 % drug retention within the Permeapad™ barrier was delivered from F1 (highest). F1, F2, and F3 significantly improved the TA's permeability through Permeapad™, compared to TA solution alone (e.g., 8.5 % TA-solution, 21.5 %-F1), attributed to the synergy effect of HPMC and propylene glycol acting as penetration enhancers. F1 displayed a significant increase in drug permeability (receptor compartment; 21.5 %) compared to F3 (17.0 %). PVP significantly enhanced drug permeability (27.5 %). Impermeable EC backing layer controlled unidirectional drug release and reduced drug loss into the donor compartment (e.g., ∼28 % for monolayer film to ∼10 % for bilayer film, F1). SIGNIFICANCE The mucoadhesive films demonstrated improved TA permeability via Permeapad™. The findings suggest that these bilayer mucoadhesive films, particularly F1, hold promise for the effective topical treatment of oral mucosa disorders, such as recurrent aphthous stomatitis and oral lichen planus.
Collapse
Affiliation(s)
- Muhannad Alhallak
- Dental Physical Sciences Unit, Faculty of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Natalia Karpukhina
- Dental Physical Sciences Unit, Faculty of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mangala Patel
- Dental Physical Sciences Unit, Faculty of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
3
|
Jain R, Singh R, Badhwar R, Gupta T, Popli H. Development and optimization of Clitoria teratea synthesized silver nanoparticles and its application to nanogel systems for wound healing. Drug Dev Ind Pharm 2024; 50:181-191. [PMID: 38318676 DOI: 10.1080/03639045.2024.2308043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVE The present research deals with sequential optimization strategy based on Central Composite Design to optimize the process variables for efficient production of Clitoria teratea (CLT) synthesized silver nanoparticles (AgNPs) using biological synthesis. METHODS Two substantial factors influencing the dependent variables viz UV-visible absorbance, particle size, zeta potential and polydispersity index (PDI) were identified as NaOH concentration, RH concentration, temperature as independent variables. In-vitro and ex-vivo studies of prepared CLT-AgNPs gel and marketed gel were carried out using dialysis membrane and egg membrane, respectively. In addition, antimicrobial study was also performed on the bacterial strains. RESULTS The particles size (114 nm), PDI (0.45), and zeta potential (-29.5 mV) of optimized formulation were found, respectively. In-vitro profile of AgNPs from prepared CLT-AgNPs gel was noted (95.6%) in 8 h. It was found that the prepared CLT-AgNPs gel stimulates fibroblast and agranulocytosis development resulting better and timely wound healing. CONCLUSIONS The prepared CLT-AgNPs gel can be as a potential substitute in the management and treatment of acute and chronic wounds.
Collapse
Affiliation(s)
- Richa Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Ruchi Singh
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Reena Badhwar
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
- Department of Pharmaceutics, Shree Guru Gobind Singh Tercentenary University, Gurugram, India
| | - Tinku Gupta
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| |
Collapse
|
4
|
Ahmad I, Farheen M, Kukreti A, Afzal O, Akhter MH, Chitme H, Visht S, Altamimi AS, Alossaimi MA, Alsulami ER, Jaremko M, Emwas AH. Natural Oils Enhance the Topical Delivery of Ketoconazole by Nanoemulgel for Fungal Infections. ACS OMEGA 2023; 8:28233-28248. [PMID: 37576685 PMCID: PMC10413480 DOI: 10.1021/acsomega.3c01571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023]
Abstract
Nanoemulgel (NEG) pharmaceutical formulations are gaining popularity because of their ability to serve both as a nanoemulsion and as a gel. These products are well-known for their ease of use, spreadability, controlled release, and ability to hydrate dry skin. Natural essential oils have been shown to promote the cutaneous permeability of topical formulations, enhancing medication safety and efficacy. Herein, we developed NEG for the enhanced permeation of ketoconazole against candidiasis using clove oil (clove-oil-NEG) or eucalyptus oil (eucalyptus-oil-NEG), using the gelling agents carbopol 943 and hydroxypropyl methylcellulose (HPMC). We tested various excipients to increase the solubility of ketoconazole and formulate a nanoemulsion (NE). We measured the NE droplet particle size, shape, entrapment efficiency, and drug release. Furthermore, the physicochemical properties of the optimized nanoemulsion formulation were characterized by techniques such as Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) analysis. The NEs were loaded into gels to form NEGs. NEGs were characterized for drug content, homogeneity, rheology, spreadability, and antifungal activity against Candida albicans, both in vitro and in vivo. Optimized ketoconazole NEG preparations consisted of either 15% clove oil or 20% eucalyptus oil. Droplet sizes in the optimized NEs were <100 nm, and the polydispersity indexes were 0.24 and 0.26. The percentages of ketoconazole released after 24 h from the clove-oil-NEG and eucalyptus-oil-NEGs were 91 ± 4.5 and 89 ± 7%, respectively. Scanning electron microscopy (SEM) showed that the NEGs had a smooth, uniform, and consistent shape and internal structural organization. The drug contents in the clove-oil-NEG and eucalyptus-oil-NEG were 98.5 ± 2.2 and 98.8 ± 3.4%, respectively. Permeation values of ketoconazole from clove-oil-NEG and eucalyptus-oil-NEG were 117 ± 7 and 108.34 ± 6 μg cm-2, respectively. The ketoconazole NEG formulations also had higher levels of fungal growth inhibition than a marketed formulation. Finally, in vivo studies showed that the NEGs do not irritate the skin. Ketoconazole NEG with either 15% clove oil or 20% eucalyptus oil is stable with better efficacy than ketoconazole alone due to excellent dispersion, drug dissolution, and permeability and thus might be recommended for the effective and safe treatment of candidiasis.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Ms Farheen
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Ashish Kukreti
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Md Habban Akhter
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Havagiray Chitme
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Sharad Visht
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | | | - Manal A. Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ebtisam R. Alsulami
- Nursing
Department, Najran Armed Forces Hospital, Najran 66251, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
5
|
Alshaya HA, Alfahad AJ, Alsulaihem FM, Aodah AH, Alshehri AA, Almughem FA, Alfassam HA, Aldossary AM, Halwani AA, Bukhary HA, Badr MY, Massadeh S, Alaamery M, Tawfik EA. Fast-Dissolving Nifedipine and Atorvastatin Calcium Electrospun Nanofibers as a Potential Buccal Delivery System. Pharmaceutics 2022; 14:pharmaceutics14020358. [PMID: 35214093 PMCID: PMC8874982 DOI: 10.3390/pharmaceutics14020358] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Geriatric patients are more likely to suffer from multiple chronic diseases that require using several drugs, which are commonly ingested. However, to enhance geriatric patients’ convenience, the electrospun nanofiber system was previously proven to be a successful alternative for the existing oral dosage forms, i.e., tablets and capsules. These nanofibers prepared either as single- or multi-layered fibers could hold at least one active compound in each layer. They might also be fabricated as ultra-disintegrated fibrous films for oral cavity administration, i.e., buccal or sublingual, to improve the bioavailability and intake of the administered drugs. Therefore, in this work, a combination of nifedipine and atorvastatin calcium, which are frequently prescribed for hypertension and hyperlipidemia patients, respectively, was prepared in a coaxial electrospinning system for buccal administration. Scanning electron microscopy image showed the successful preparation of smooth, non-beaded, and non-porous surfaces of the drug-loaded nanofibers with an average fiber diameter of 968 ± 198 nm. In contrast, transmission electron microscopy distinguished the inner and outer layers of those nanofibers. The disintegration of the drug-loaded nanofibers was ≤12 s, allowing the rapid release of nifedipine and atorvastatin calcium to 61% and 47%, respectively, after 10 min, while a complete drug release was achieved after 120 min. In vitro, a drug permeation study using Franz diffusion showed that the permeation of both drugs from the core–shell nanofibers was enhanced significantly (p < 0.05) compared to the drugs in a solution form. In conclusion, the development of drug-loaded nanofibers containing nifedipine and atorvastatin calcium can be a potential buccal delivery system.
Collapse
Affiliation(s)
- Hassa A. Alshaya
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (H.A.A.); (A.J.A.); (F.M.A.); (A.H.A.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Ahmed J. Alfahad
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (H.A.A.); (A.J.A.); (F.M.A.); (A.H.A.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Fatemah M. Alsulaihem
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (H.A.A.); (A.J.A.); (F.M.A.); (A.H.A.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Alhassan H. Aodah
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (H.A.A.); (A.J.A.); (F.M.A.); (A.H.A.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Abdullah A. Alshehri
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (H.A.A.); (A.J.A.); (F.M.A.); (A.H.A.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Fahad A. Almughem
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (H.A.A.); (A.J.A.); (F.M.A.); (A.H.A.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Haya A. Alfassam
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (H.A.A.); (S.M.); (M.A.)
| | - Ahmad M. Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (H.A.A.); (A.J.A.); (F.M.A.); (A.H.A.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Abdulrahman A. Halwani
- Pharmaceutics Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 22254, Saudi Arabia;
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Haitham A. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (H.A.B.); (M.Y.B.)
| | - Moutaz Y. Badr
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (H.A.B.); (M.Y.B.)
| | - Salam Massadeh
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (H.A.A.); (S.M.); (M.A.)
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia
- Saudi Human Genome Satellite Laboratory at King Abdulaziz Medical City, King Abdulaziz City for Science and Technology (KACST), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia
| | - Manal Alaamery
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (H.A.A.); (S.M.); (M.A.)
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia
- Saudi Human Genome Satellite Laboratory at King Abdulaziz Medical City, King Abdulaziz City for Science and Technology (KACST), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia
| | - Essam A. Tawfik
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (H.A.A.); (A.J.A.); (F.M.A.); (A.H.A.); (A.A.A.); (F.A.A.); (A.M.A.)
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (H.A.A.); (S.M.); (M.A.)
- Correspondence:
| |
Collapse
|
6
|
Fabrication and Characterization of Fast-Dissolving Films Containing Escitalopram/Quetiapine for the Treatment of Major Depressive Disorder. Pharmaceutics 2021; 13:pharmaceutics13060891. [PMID: 34208460 PMCID: PMC8234593 DOI: 10.3390/pharmaceutics13060891] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022] Open
Abstract
Major depressive disorder (MMD) is a leading cause of disability worldwide. Approximately one-third of patients with MDD fail to achieve response or remission leading to treatment-resistant depression (TRD). One of the psychopharmacological strategies to overcome TRD is using a combination of an antipsychotic as an augmenting agent with selective serotonin reuptake inhibitors (SSRIs). Among which, an atypical antipsychotic, quetiapine (QUE), and an SSRI, escitalopram (ESC), were formulated as a fixed-dose combination as a fast-dissolving film by coaxial electrospinning. The resultant fiber’s morphology was studied. SEM images showed that the drug-loaded fibers were smooth, un-beaded, and non-porous with a fiber diameter of 0.9 ± 0.1 µm, while the TEM images illustrated the distinctive layers of the core and shell, confirming the successful preparation of these fibers. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies confirmed that both drugs were amorphously distributed within the drug-loaded fibers. The drug-loaded fibers exhibited a disintegration time of 2 s, which accelerated the release of both drugs (50% after 5 min) making it an attractive formulation for oral mucosal delivery. The ex vivo permeability study demonstrated that QUE was permeated through the buccal membrane, but not ESC that might be hindered by the buccal epithelium and the intercellular lipids. Overall, the developed coaxial fibers could be a potential buccal dosage form that could be attributed to higher acceptability and adherence among vulnerable patients, particularly mentally ill patients.
Collapse
|
7
|
Gjuroski I, Girousi E, Meyer C, Hertig D, Stojkov D, Fux M, Schnidrig N, Bucher J, Pfister S, Sauser L, Simon HU, Vermathen P, Furrer J, Vermathen M. Evaluation of polyvinylpyrrolidone and block copolymer micelle encapsulation of serine chlorin e6 and chlorin e4 on their reactivity towards albumin and transferrin and their cell uptake. J Control Release 2019; 316:150-167. [PMID: 31689463 DOI: 10.1016/j.jconrel.2019.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/02/2019] [Accepted: 10/02/2019] [Indexed: 01/10/2023]
Abstract
Encapsulation of porphyrinic photosensitizers (PSs) into polymeric carriers plays an important role in enhancing their efficiency as drugs in photodynamic therapy (PDT). Porphyrin aggregation and low solubility as well as the preservation of the advantageous photophysical properties pose a challenge on the design of efficient PS-carrier systems. Block copolymer micelles (BCMs) and polyvinylpyrrolidone (PVP) are promising drug delivery vehicles for physical entrapment of PSs. BCMs exhibit enhanced dynamics as compared to the less flexible PVP network. In the current work the question is addressed how these different dynamics affect PS encapsulation, release from the carrier, reaction with serum proteins, and cellular uptake. The porphyrinic compounds serine-amide of chlorin e6 (SerCE) and chlorin e4 (CE4) were used as model PSs with different lipophilicity and aggregation properties. 1H NMR and fluorescence spectroscopy were applied to study their interactions with PVP and BCMs consisting of Kolliphor P188 (KP). Both chlorins were well encapsulated by the carriers and had improved photophysical properties. Compared to SerCE, the more lipophilic CE4 exhibited stronger hydrophobic interactions with the BCM core, stabilizing the system and preventing exchange with the surrounding medium as was shown by NMR NOESY and DOSY experiments. PVP and BCMs protected the encapsulated chlorins against interaction with human transferrin (Tf). However, SerCE and CE4 were released from BCMs in favor of binding to human serum albumin (HSA) while PVP prevented interaction with HSA. Fluorescence spectroscopic studies revealed that HSA binds to the surface of PVP forming a protein corona. PVP and BCMs reduced cellular uptake of the chlorins. However, encapsulation into BCMs resulted in more efficient cell internalization for CE4 than for SerCE. HSA significantly lowered both, free and carrier-mediated cell uptake for CE4 and SerCE. In conclusion, PVP appears as the more universal delivery system covering a broad range of host molecules with respect to polarity, whereas BCMs require a higher drug-carrier compatibility. Poorly soluble hydrophobic PSs benefit stronger from BCM-type carriers due to enhanced bioavailability through disaggregation and solubilization allowing for more efficient cell uptake. In addition, increased PS-carrier hydrophobic interactions have a stabilizing effect. For more hydrophilic PSs, the main advantage of polymeric carriers like PVP or poloxamer micelles lies in their protection during the transport through the bloodstream. HSA binding plays an important role for drug release and cell uptake in carrier-mediated delivery to the target tissue.
Collapse
Affiliation(s)
- Ilche Gjuroski
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland.
| | - Eleftheria Girousi
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Christoph Meyer
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Damian Hertig
- Department of BioMedical Research and Radiology, University of Bern and Inselspital, sitem-insel AG, Freiburgstrasse 3, CH-3010, Bern, Switzerland; Institute of Clinical Chemistry, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Michaela Fux
- Institute of Clinical Chemistry, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Nicolas Schnidrig
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Jan Bucher
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Sara Pfister
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Luca Sauser
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Peter Vermathen
- Department of BioMedical Research and Radiology, University of Bern and Inselspital, sitem-insel AG, Freiburgstrasse 3, CH-3010, Bern, Switzerland
| | - Julien Furrer
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Martina Vermathen
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland.
| |
Collapse
|