1
|
Laanet PR, Bragina O, Jõul P, Vaher M. Plantago major and Plantago lanceolata Exhibit Antioxidant and Borrelia burgdorferi Inhibiting Activities. Int J Mol Sci 2024; 25:7112. [PMID: 39000214 PMCID: PMC11240987 DOI: 10.3390/ijms25137112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Lyme disease, caused by Borrelia burgdorferi sensu lato infection, is the most widespread vector-borne illness in the Northern Hemisphere. Unfortunately, using targeted antibiotic therapy is often an ineffective cure. The antibiotic resistance and recurring symptoms of Lyme disease are associated with the formation of biofilm-like aggregates of B. burgdorferi. Plant extracts could provide an effective alternative solution as many of them exhibit antibacterial or biofilm inhibiting activities. This study demonstrates the therapeutic potential of Plantago major and Plantago lanceolata as B. burgdorferi inhibitors. Hydroalcoholic extracts from three different samples of each plant were first characterised based on their total concentrations of polyphenolics, flavonoids, iridoids, and antioxidant capacity. Both plants contained substantial amounts of named phytochemicals and showed considerable antioxidant properties. The major non-volatile constituents were then quantified using HPLC-DAD-MS analyses, and volatile constituents were quantified using HS-SPME-GC-MS. The most prevalent non-volatiles were found to be plantamajoside and acteoside, and the most prevalent volatiles were β-caryophyllene, D-limonene, and α-caryophyllene. The B. burgdorferi inhibiting activity of the extracts was tested on stationary-phase B. burgdorferi culture and its biofilm fraction. All extracts showed antibacterial activity, with the most effective lowering the residual bacterial viability down to 15%. Moreover, the extracts prepared from the leaves of each plant additionally demonstrated biofilm inhibiting properties, reducing its formation by 30%.
Collapse
Affiliation(s)
- Pille-Riin Laanet
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Olga Bragina
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Piia Jõul
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Merike Vaher
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
2
|
Mssillou I, Bakour M, Slighoua M, Laaroussi H, Saghrouchni H, Ez-Zahra Amrati F, Lyoussi B, Derwich E. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115663. [PMID: 36038091 DOI: 10.1016/j.jep.2022.115663] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The human skin constitutes a biological barrier against external stress and wounds can reduce the role of its physiological structure. In medical sciences, wounds are considered a major problem that requires urgent intervention. For centuries, medicinal plants have been used in the Mediterranean countries for many purposes and against wounds. AIM OF THIS REVIEW Provides an outlook on the Mediterranean medicinal plants used in wound healing. Furthermore, the wound healing effect of polyphenolic compounds and their chemical structures are also summarized. Moreover, we discussed the wound healing process, the structure of the skin, and the current therapies in wound healing. MATERIALS AND METHODS The search was performed in several databases such as ScienceDirect, PubMed, Google Scholar, Scopus, and Web of Science. The following Keywords were used individually and/or in combination: the Mediterranean, wound healing, medicinal plants, phenolic compounds, composition, flavonoid, tannin. RESULTS The wound healing process is distinguished by four phases, which are respectively, hemostasis, inflammation, proliferation, and remodeling. The Mediterranean medicinal plants are widely used in the treatment of wounds. The finding showed that eighty-nine species belonging to forty families were evaluated for their wound-healing effect in this area. The Asteraceae family was the most reported family with 12 species followed by Lamiaceae (11 species). Tunisia, Egypt, Morocco, and Algeria were the countries where these plants are frequently used in wound healing. In addition to medicinal plants, results showed that nineteen phenolic compounds from different classes are used in wound treatment. Tyrosol, hydroxytyrosol, curcumin, luteolin, chrysin, rutin, kaempferol, quercetin, icariin, morin, epigallocatechin gallate, taxifolin, silymarin, hesperidin, naringin, isoliquiritin, puerarin, genistein, and daidzein were the main compounds that showed wound-healing effect. CONCLUSION In conclusion, medicinal plants and polyphenolic compounds provide therapeutic evidence in wound healing and for the development of new drugs in this field.
Collapse
Affiliation(s)
- Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Slighoua
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330 Balcalı/Sarıçam, Adana, Turkey
| | - Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
3
|
Iqbal Y, Ponnampalam EN, Cottrell JJ, Suleria HA, Dunshea FR. Extraction and characterization of polyphenols from non-conventional edible plants and their antioxidant activities. Food Res Int 2022; 157:111205. [DOI: 10.1016/j.foodres.2022.111205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
|
4
|
Abstract
The medicinal benefits of P. lanceolata L. have been acknowledged worldwide for hundreds of years. The plant is now distributed worldwide, especially in temperate zones. This review gives an overview of ethnomedicinal use, phytochemistry, pharmacological activities, and other potential application of P. lanceolate L. Several effective chemical constituents such as polyphenols, tannins, flavonoids, alkaloids, terpenoids, iridoid glycosides, fatty acids, and polysaccharides are found in P. lanceolata L., which contribute to its exerting specific therapeutic effects. Correspondingly, studies have found that P. lanceolata L. has different biological activities, including antioxidant, antibacterial, wound-healing, anti-inflammatory, cytotoxic, and antiulcerogenic activity. The plant also treats various diseases related to the skin, respiratory organs, digestive organs, reproduction, circulation, cancer, pain relief, and infections. The plant has many applications in cosmetics such as lotion and creams; it is also used as an excellent indicator to know the presence and absence of heavy metals and the accumulation in industrial and urban areas. The plant suppresses soil nitrogen mineralization in agriculture due to allelochemicals such as aucubin. The biological activities, medicinal properties, and industrial application of P. lanceolata mainly depend on the activities of the responsible, active chemical constituents. However, this field still needs more study to determine the exact mechanisms and the main bioactive compound activity accountable for these activities. Also, most of the studies have been performed in vitro, so further in vivo studies are recommended for the future.
Collapse
|
5
|
Scappaticci RAF, Berretta AA, Torres EC, Buszinski AFM, Fernandes GL, dos Reis TF, de Souza-Neto FN, Gorup LF, de Camargo ER, Barbosa DB. Green and Chemical Silver Nanoparticles and Pomegranate Formulations to Heal Infected Wounds in Diabetic Rats. Antibiotics (Basel) 2021; 10:1343. [PMID: 34827281 PMCID: PMC8614779 DOI: 10.3390/antibiotics10111343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Infected cutaneous ulcers from diabetic rats with Candida albicans and Streptococcus aureus were treated with spray formulations containing green silver nanoparticles (GS), chemical silver nanoparticles (CS), or pomegranate peel extract (PS). After wound development and infection, the treatments were performed twice per day for 14 days. The wound healing was analyzed on days 2, 7, and 14 through the determination of CFUs, inflammatory infiltrate, angiogenesis, fibroplasia, myeloperoxidase, and collagen determination. Expressive improvement in wound healing was noted using both silver nanoparticles for 7 days. All the treatments were superior to controls and promoted significant S. aureus reduction after 14 days. CS presented better anti-inflammatory results, and GS and CS the highest number of fibroblasts. Despite the techniques' limitations, GS and CS demonstrated considerable potential for managing infected wounds, especially considering no early strategies prior to the drugs, such as the debridement of these wounds, were included.
Collapse
Affiliation(s)
- Renan Aparecido Fernandes Scappaticci
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.A.F.S.); (G.L.F.); (T.F.d.R.)
| | - Andresa Aparecida Berretta
- Laboratory of Research, Development & Innovation, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil; (A.A.B.); (E.C.T.); (A.F.M.B.)
| | - Elina Cassia Torres
- Laboratory of Research, Development & Innovation, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil; (A.A.B.); (E.C.T.); (A.F.M.B.)
| | - Andrei Felipe Moreira Buszinski
- Laboratory of Research, Development & Innovation, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil; (A.A.B.); (E.C.T.); (A.F.M.B.)
| | - Gabriela Lopes Fernandes
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.A.F.S.); (G.L.F.); (T.F.d.R.)
| | - Thaila Fernanda dos Reis
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.A.F.S.); (G.L.F.); (T.F.d.R.)
| | - Francisco Nunes de Souza-Neto
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil; (F.N.d.S.-N.); (L.F.G.); (E.R.d.C.)
| | - Luiz Fernando Gorup
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil; (F.N.d.S.-N.); (L.F.G.); (E.R.d.C.)
| | - Emerson Rodrigues de Camargo
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil; (F.N.d.S.-N.); (L.F.G.); (E.R.d.C.)
| | - Debora Barros Barbosa
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.A.F.S.); (G.L.F.); (T.F.d.R.)
| |
Collapse
|
6
|
Gál P, Vasilenko T, Kováč I, Čoma M, Jakubčo J, Jakubčová M, Peržeľová V, Urban L, Kolář M, Sabol F, Luczy J, Novotný M, Majerník J, Gabius HJ, Smetana KJ. Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions in vivo. Mol Med Rep 2020; 23:99. [PMID: 33300056 PMCID: PMC7723164 DOI: 10.3892/mmr.2020.11738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Understanding the molecular and cellular processes in skin wound healing can pave the way for devising innovative concepts by turning the identified natural effectors into therapeutic tools. Based on the concept of broad-scale engagement of members of the family of galactoside-binding lectins (galectins) in pathophysiological processes, such as cancer or tissue repair/regeneration, the present study investigated the potential of galectins-1 (Gal-1) and −3 (Gal-3) in wound healing. Human dermal fibroblasts, which are key cells involved in skin wound healing, responded to galectin exposure (Gal-1 at 300 or Gal-3 at 600 ng/ml) with selective changes in gene expression among a panel of 84 wound-healing-related genes, as well as remodeling of the extracellular matrix. In the case of Gal-3, positive expression of Ki67 and cell number increased when using a decellularized matrix produced by Gal-3-treated fibroblasts as substrate for culture of interfollicular keratinocytes. In vivo wounds were topically treated with 20 μg/ml Gal-1 or −3, and collagen score was found to be elevated in excisional wound repair in rats treated with Gal-3. The tensile strength measured in incisions was significantly increased from 79.5±17.5 g/mm2 in controls to 103.1±21.4 g/mm2 after 21 days of healing. These data warrant further testing mixtures of galectins and other types of compounds, for example a combination of galectins and TGF-β1.
Collapse
Affiliation(s)
- Peter Gál
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Tomáš Vasilenko
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Ivan Kováč
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Matúš Čoma
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Ján Jakubčo
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Martina Jakubčová
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Vlasta Peržeľová
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Lukáš Urban
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of The Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - František Sabol
- Department of Heart Surgery, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Ján Luczy
- Department of Heart Surgery, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Martin Novotný
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Jaroslav Majerník
- Department of Medical Informatics, Faculty of Medicine, Pavol Jozef Šafárik University, 040 66 Košice, Slovak Republic
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig‑Maximilian‑University, D‑80539 Munich, Germany
| | - Karel Jr Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague
| |
Collapse
|
7
|
Hancioğlu S, Demirel BD, Biçakci Ü, Gün S, Aritürk E, Aritürk N. Histopathological and mechanical effects of Ankaferd Blood Stopper® on wound healing in rats: an experimental model. Turk J Med Sci 2020; 50:1428-1433. [PMID: 32490638 PMCID: PMC7491291 DOI: 10.3906/sag-2004-177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/19/2020] [Indexed: 12/02/2022] Open
Abstract
Background/aim To evaluate the histopathological and mechanical effects of Ankaferd Blood Stopper (ABS) application on wound healing. Materials and methods A total of 24 Wistar albino rats were randomly divided into three equal groups. In each group, a 3 cm-long midline vertical skin incision was performed in the back of the rats. In Group 1, the incision was sutured primarily. In Group 2, incision was left to secondary healing. In Group 3, ABS was applied to the incision. On the 10th day, burst pressure width was measured, and rats were sacrificed. The tissue samples were examined histopathologically. Statistical analysis was conducted with IBM SPSS program. P < 0.05 was considered significant. Results The mean burst pressure widths of wound separation were 13.66 ± 0.457, 7.18 ± 2.599, and 13.66 ± 1.11 mm for Groups 1–3, respectively. The difference in burst pressure width between Groups 1 and 3 was not significant (P > 0.05) but was significant between Groups 2 and 3 (P = 0.000). The vascular proliferation median values were 1, 2, and 2, for Groups 1–3, respectively. Although the difference was significant between Groups 1 and 2 in terms of vascular proliferation score (P = 0.047), no significant difference was observed between Group 3 and others. No statistically significant difference was observed among the groups in terms of collagen score, mononuclear cell infiltration, and polymorphonuclear cell proliferation (P > 0.05). The median values of fibroblast proliferation score were 1, 2, and 3, in Groups 1–3, respectively. Fibroblast proliferation score significantly differed between Groups 1 and 3 (P = 0.003). Conclusion ABS application results in a clean wound healing that is as strong as primary repair. However, additional studies are required to evaluate the late results of increased fibroblastic activity in the early period of ABS application alone.
Collapse
Affiliation(s)
- Sertaç Hancioğlu
- Department of Pediatric Surgery, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Berat Dilek Demirel
- Department of Pediatric Surgery, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ünal Biçakci
- Department of Pediatric Surgery, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Seda Gün
- Department of Pathology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ender Aritürk
- Department of Pediatric Surgery, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Nurşen Aritürk
- Department of Ophthalmology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
8
|
Lammel C, Zwirchmayr J, Seigner J, Rollinger JM, de Martin R. Peucedanum ostruthium Inhibits E-Selectin and VCAM-1 Expression in Endothelial Cells through Interference with NF-κB Signaling. Biomolecules 2020; 10:E1215. [PMID: 32825714 PMCID: PMC7563923 DOI: 10.3390/biom10091215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Twenty natural remedies traditionally used against different inflammatory diseases were probed for their potential to suppress the expression of the inflammatory markers E-selectin and VCAM-1 in a model system of IL-1 stimulated human umbilical vein endothelial cells (HUVEC). One third of the tested extracts showed in vitro inhibitory effects comparable to the positive control oxozeaenol, an inhibitor of TAK1. Among them, the extract derived from the roots and rhizomes of Peucedanum ostruthium (i.e., Radix Imperatoriae), also known as masterwort, showed a pronounced and dose-dependent inhibitory effect. Reporter gene analysis demonstrated that inhibition takes place on the transcriptional level and involves the transcription factor NF-κB. A more detailed analysis revealed that the P. ostruthium extract (PO) affected the phosphorylation, degradation, and resynthesis of IκBα, the activation of IKKs, and the nuclear translocation of the NF-κB subunit RelA. Strikingly, early effects on this pathway were less affected as compared to later ones, suggesting that PO may act on mechanism(s) that are downstream of nuclear translocation. As the majority of cognate NF-κB inhibitors affect upstream events such as IKK2, these findings could indicate the existence of targetable signaling events at later stages of NF-κB activation.
Collapse
Affiliation(s)
- Christoph Lammel
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstaße 17, 1090 Vienna, Austria; (C.L.); (J.S.); (R.d.M.)
| | - Julia Zwirchmayr
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria;
| | - Jaqueline Seigner
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstaße 17, 1090 Vienna, Austria; (C.L.); (J.S.); (R.d.M.)
| | - Judith M. Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria;
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstaße 17, 1090 Vienna, Austria; (C.L.); (J.S.); (R.d.M.)
| |
Collapse
|
9
|
Aesculus hippocastanum L. Extract Does Not Induce Fibroblast to Myofibroblast Conversion but Increases Extracellular Matrix Production In Vitro Leading to Increased Wound Tensile Strength in Rats. Molecules 2020; 25:molecules25081917. [PMID: 32331226 PMCID: PMC7221972 DOI: 10.3390/molecules25081917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
The ability of horse chestnut extract (HCE) to induce contraction force in fibroblasts, a process with remarkable significance in skin repair, motivated us to evaluate its wound healing potential in a series of experiments. In the in vitro study of the ability of human dermal fibroblasts to form myofibroblast-like cells was evaluated at the protein level (Western blot and immunofluorescence). The in vivo study was conducted on male Sprague-Dawley rats with inflicted wounds (one open circular and one sutured incision) on their backs. Rats were topically treated with two tested HCE concentrations (0.1% and 1%) or sterile water. The control group remained untreated. The incisions were processed for wound tensile strength (TS) measurement whereas the open wounds were subjected to histological examination. On the in vitro level the HCE extract induced fibronectin-rich extracellular matrix formation, but did not induced α-smooth muscle actin (SMA) expression in dermal fibroblasts. The animal study revealed that HCE increased wound TS and improved collagen organization. In conclusion, the direct comparison of both basic wound models demonstrated that the healing was significantly increased following HCE, thus this extract may be found useful to improve healing of acute wounds. Nevertheless, the use of an experimental rat model warrants a direct extrapolation to the human clinical situation.
Collapse
|
10
|
Plantago lanceolata as a source of health-beneficial phytochemicals: Phenolics profile and antioxidant capacity. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Connelly E, Del Genio CI, Harrison F. Data Mining a Medieval Medical Text Reveals Patterns in Ingredient Choice That Reflect Biological Activity against Infectious Agents. mBio 2020; 11:e03136-19. [PMID: 32047130 PMCID: PMC7018648 DOI: 10.1128/mbio.03136-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
The pharmacopeia used by physicians and laypeople in medieval Europe has largely been dismissed as placebo or superstition. While we now recognize that some of the materia medica used by medieval physicians could have had useful biological properties, research in this area is limited by the labor-intensive process of searching and interpreting historical medical texts. Here, we demonstrate the potential power of turning medieval medical texts into contextualized electronic databases amenable to exploration by the use of an algorithm. We used established methodologies from network science to reveal patterns in ingredient selection and usage in a key text, the 15th-century Lylye of Medicynes, focusing on remedies to treat symptoms of microbial infection. In providing a worked example of data-driven textual analysis, we demonstrate the potential of this approach to encourage interdisciplinary collaboration and to shine a new light on the ethnopharmacology of historical medical texts.IMPORTANCE We used established methodologies from network science to identify patterns in medicinal ingredient combinations in a key medieval text, the 15th-century Lylye of Medicynes, focusing on recipes for topical treatments for symptoms of microbial infection. We conducted experiments screening the antimicrobial activity of selected ingredients. These experiments revealed interesting examples of ingredients that potentiated or interfered with each other's activity and that would be useful bases for future, more detailed experiments. Our results highlight (i) the potential to use methodologies from network science to analyze medieval data sets and detect patterns of ingredient combination, (ii) the potential of interdisciplinary collaboration to reveal different aspects of the ethnopharmacology of historical medical texts, and (iii) the potential development of novel therapeutics inspired by premodern remedies in a time of increased need for new antibiotics.
Collapse
Affiliation(s)
- Erin Connelly
- Schoenberg Institute for Manuscript Studies, Philadelphia, Pennsylvania, USA
| | - Charo I Del Genio
- Centre for Fluid and Complex Systems, School of Computing, Electronics and Mathematics, Coventry University, Coventry, United Kingdom
| | - Freya Harrison
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
12
|
Electrospun wound dressing as a promising tool for the therapeutic delivery of ascorbic acid and caffeine. Ther Deliv 2019; 10:757-767. [PMID: 31840563 DOI: 10.4155/tde-2019-0059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: The aim of this work is to formulate a wound dressing for the delivery of ascorbic acid and caffeine. Method: A wound dressing was developed from electrospun nanofiber containing ascorbic acid and caffeine. In vitro drug release was performed at 25°C and 32°C. Wound healing activity of the nanofiber mats was tested in vivo using rat model with skin excision. Antifungal activity of the dressing was tested on Candida albicans using the disc diffusion method. Results & conclusion: Zone of inhibition was 6.7 mm for caffeine dressing; however, inhibition zone increased to 16.7 mm for samples containing both caffeine and ascorbic acid. Animals treated with ascorbic acid showed collagen deposition and very few fibroblast cells. Blood vessels and fibroblasts were increased in caffeine-loaded dressings compared with the ascorbic acid group. The findings of the present work suggest the benefits of topical ascorbic acid and caffeine for its high wound healing effects.
Collapse
|
13
|
Genc Y, Dereli FTG, Saracoglu I, Akkol EK. The inhibitory effects of isolated constituents from Plantago major subsp. major L. on collagenase, elastase and hyaluronidase enzymes: Potential wound healer. Saudi Pharm J 2019; 28:101-106. [PMID: 31920436 PMCID: PMC6950955 DOI: 10.1016/j.jsps.2019.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Plantago major L. which is a medicinal plant with important biological activities, commonly used as traditional medicine. Potential inhibitory activities of the aqueous extract and three isolated constituents calceorioside B (1), homoplantaginin (hispidulin-7-O-glucoside) (2) and plantamajoside (3) from the aerial parts of Plantago major subsp. major L. (Plantaginaceae) have been tested against hyaluronidase, collagenase, and elastase, which play critical roles in wound pathogenesis. Even though, the extract (27.04%), and among the isolated compounds, calceorioside B (41.16%) exerted significant inhibition against hyaluronidase enzyme, homoplantaginin and plantamajoside were found to be inactive. Similar results were obtained from collagenase enzyme inhibition test. The extract (21.92%) and calceorioside B (28.34%) also caused notable inhibition in this test. However, no remarkable inhibition was observed in the presence of elastase enzyme. The experimental data revealed that P. major subsp. major displayed remarkable inhibitory activity against hyaluronidase and collagenase enzymes. In vitro enzyme activity of P. major subsp. major is reported for the first time in the current study.
Collapse
Affiliation(s)
- Yasin Genc
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | | | - Iclal Saracoglu
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Esra Kupeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Etiler, Ankara, Turkey
| |
Collapse
|
14
|
Poljšak N, Kreft S, Kočevar Glavač N. Vegetable butters and oils in skin wound healing: Scientific evidence for new opportunities in dermatology. Phytother Res 2019; 34:254-269. [PMID: 31657094 DOI: 10.1002/ptr.6524] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022]
Abstract
The use of vegetable butters and oils shows promising results in the treatment of skin wounds, as they have an effective impact on the phases of the wound-healing process through their antimicrobial, anti-inflammatory, and antioxidative activities and by promoting cell proliferation, increasing collagen synthesis, stimulating dermal reconstruction, and repairing the skin's lipid barrier function. In this article, in vitro and in vivo studies of argan (Argania spinosa), avocado (Persea americana), black cumin (Nigella sativa), calophyllum (Calophyllum inophyllum), coconut (Cocos nucifera), cranberry (Vaccinium macrocarpon), grape (Vitis vinifera), green coffee (Coffea arabica), lentisk (Pistacia lentiscus), linseed (Linum usitatissimum), lucuma (Pouteria lucuma), mango (Mangifera indica), olive (Olea europaea), pomegranate (Punica granatum), pumpkin (Cucurbita pepo), rapeseed (Brassica napus), sea buckthorn (Hippophae rhamnoides), and sunflower (Helianthus annuus) oils were reviewed. In many cases, vegetable oils proved to be more effective than synthetic wound-healing compounds used as controls. The fatty-acid components of vegetable oils are assumed to play a major role in the wound-healing process, in particular polyunsaturated fatty acids such as linoleic acid. Evidence shows that oils with a higher linoleic to oleic acid ratio are more effective for lipid barrier repair. However, in depth studies are needed to gain knowledge about vegetable oils' effects on the skin and vice versa.
Collapse
Affiliation(s)
- Nina Poljšak
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Samo Kreft
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
15
|
Alamgeer, Sharif A, Asif H, Younis W, Riaz H, Bukhari IA, Assiri AM. Indigenous medicinal plants of Pakistan used to treat skin diseases: a review. Chin Med 2018; 13:52. [PMID: 30364348 PMCID: PMC6194552 DOI: 10.1186/s13020-018-0210-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/11/2018] [Indexed: 11/10/2022] Open
Abstract
Ethno-pharmacological relevance Plants are providing reliable therapy since time immemorial. Pakistan has a great diversity in medicinal flora and people use these ethno-medicines to deal with many skin problems. This review explores the fundamental knowledge on various dermatological properties of medicinal plants of Pakistan and is aimed to provide a baseline for the discovery of new plants having activities against skin issues. Material and method A total of 244 published articles were studied using different research engines like PubMed, Google, Google-scholar and science direct. Results Review of literature revealed ethno-pharmacological use of 545 plant species, belonging to 118 families and 355 genera, to combat various skin ailments. Out of these, ten most commonly used plant species belonging to ten different families are documented in this review. It was also found out that ehno-medicines are prepared using various parts of the plants including leaves (28.32%), whole plant and roots 13.17% and 10.97% respectively, in the form of powder (23.5%) and paste (22.75%). A total of 13 endangered plant species and ten commercially important plants were recorded. Conclusion Medicinal plants of Pakistan have therapeutic effects against several skin problems; however most of medicinal plants are still not evaluated scientifically to support their ethno-pharmacological claim on skin. Dermatological pathogens are recommended to study. Further, the conservational programs should be established for endangered species.
Collapse
Affiliation(s)
- Alamgeer
- 1Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Amber Sharif
- 1Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Hira Asif
- 1Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Waqas Younis
- 1Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Humayun Riaz
- Rashid Latif College of Pharmacy, Lahore, Pakistan
| | - Ishfaq Ali Bukhari
- 3Department of Pharmacology, College of Medicine, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Asaad Mohamed Assiri
- 4Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Kurt B, Bilge N, Sözmen M, Aydın U, Önyay T, Özaydın I. Effects of Plantago lanceolata L. extract on full-thickness excisional wound healing in a mouse model. Biotech Histochem 2018; 93:249-257. [PMID: 29575942 DOI: 10.1080/10520295.2017.1421773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Wound healing requires cells that increase both collagen production as a result of inflammatory events and regeneration of epithelial tissue. The Plantago species of herbs have been used in traditional treatment of skin disorders and infectious diseases, and digestive, respiratory, reproductive and circulatory conditions. We investigated the efficacy of different concentrations of Plantago lanceolata L. extract (PLE) for wound healing owing to its anti-inflammatory, anti-bacterial, anti-fungal, anti-oxidant, anti-ulcerative, analgesic and immunomodulatory properties. We used 72 mice in four groups of 18. An excisional 1 cm wound was created in the skin on the back of the mice in all groups. An ointment containing 10% PLE was applied to the wound in group 1, an ointment containing 20% PLE was applied in group 2 and vaseline was applied in group 3. In group 4, no treatment was applied to the wound. On days 7, 14, and 21 of the experiment, six animals in each group were sacrificed after the wounds were photographed and specimens from the wound sites were examined. On day 14, epithelialization was more prominent in group 2, while vascularization and collagen deposition was more advanced in groups 1 and 2 compared to the other groups. Immunohistochemical examination revealed that TGF-β1 expression was elevated on day 14 in all groups; however, this elevation was more limited in groups 1 and 2 than in groups 3 and 4. Although ANGPT-2 expression increased in groups 1 and 4 on day 14, it decreased significantly in groups 2 and 3. We found that different concentrations of PLE exhibited positive effects on wound healing. Application of 10% PLE ointment may be a useful strategy for wound healing.
Collapse
Affiliation(s)
- B Kurt
- a Department of Surgery, Faculty of Veterinary Medicine , Kafkas University , Kars , Turkey
| | - N Bilge
- b Department of Food Safety and Public Health, Faculty of Veterinary Medicine , Kafkas University , Kars , Turkey
| | - M Sözmen
- c Department of Pathology, Faculty of Veterinary Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - U Aydın
- a Department of Surgery, Faculty of Veterinary Medicine , Kafkas University , Kars , Turkey
| | - T Önyay
- d Department of Surgery, Faculty of Veterinary Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - I Özaydın
- a Department of Surgery, Faculty of Veterinary Medicine , Kafkas University , Kars , Turkey
| |
Collapse
|
17
|
Kalantari A, Kósa D, Nemes D, Ujhelyi Z, Fehér P, Vecsernyés M, Váradi J, Fenyvesi F, Kuki Á, Gonda S, Vasas G, Gesztelyi R, Salimi A, Bácskay I. Self-Nanoemulsifying Drug Delivery Systems Containing Plantago lanceolata-An Assessment of Their Antioxidant and Antiinflammatory Effects. Molecules 2017; 22:E1773. [PMID: 29053620 PMCID: PMC6151772 DOI: 10.3390/molecules22101773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/27/2023] Open
Abstract
The most important components of Plantago lanceolata L. leaves are catalpol, aucubin, and acteoside (=verbascoside). These bioactive compounds possess different pharmacological effects: anti-inflammatory, antioxidant, antineoplastic, and hepatoprotective. The aim of this study was to protect Plantago lanceolata extract from hydrolysis and to improve its antioxidant effect using self-nano-emulsifying drug delivery systems (SNEDDS). Eight SNEDDS compositions were prepared, and their physical properties, in vitro cytotoxicity, and in vivo AST/ALT values were investigated. MTT cell viability assay was performed on Caco-2 cells. The well-diluted samples (200 to 1000-fold dilutions) proved to be non-cytotoxic. The acute administration of PL-SNEDDS compositions resulted in minor changes in hepatic markers (AST, ALT), except for compositions 4 and 8 due to their high Transcutol contents (80%). The non-toxic compositions showed a significant increase in free radical scavenger activity measured by the DPPH test compared to the blank SNEDDS. An indirect dissolution test was performed, based on the result of the DPPH antioxidant assay; the dissolution profiles of Plantago lancolata extract were statistically different from each SNEDDS. The anti-inflammatory effect of PL-SNEDDS compositions was confirmed by the ear inflammation test. For the complete examination period, all compositions decreased ear edema as compared to the positive (untreated) control. It can be concluded that PL-SNEDDS compositions could be used to deliver active natural compounds in a stable, efficient, and safe manner.
Collapse
Affiliation(s)
- Azin Kalantari
- Department of Pharmaceutical Technology (www.pharm.unideb.hu), University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Dóra Kósa
- Department of Pharmaceutical Technology (www.pharm.unideb.hu), University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Dániel Nemes
- Department of Pharmaceutical Technology (www.pharm.unideb.hu), University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology (www.pharm.unideb.hu), University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Pálma Fehér
- Department of Pharmaceutical Technology (www.pharm.unideb.hu), University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology (www.pharm.unideb.hu), University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Judit Váradi
- Department of Pharmaceutical Technology (www.pharm.unideb.hu), University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology (www.pharm.unideb.hu), University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Ákos Kuki
- Department of Applied Chemistry (www.pharm.unideb.hu), University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Sándor Gonda
- Department of Pharmacognosy (www.pharm.unideb.hu), University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Gábor Vasas
- Department of Pharmacognosy (www.pharm.unideb.hu), University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Rudolf Gesztelyi
- Department of Pharmacology (www.med.unideb.hu), University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Anayatollah Salimi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran.
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology (www.pharm.unideb.hu), University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| |
Collapse
|
18
|
El-Ferjani RM, Ahmad M, Dhiyaaldeen SM, Harun FW, Ibrahim MY, Adam H, Mohd. Yamin B, Al-Obaidi MMJ, Batran RA. In vivo Assessment of Antioxidant and Wound Healing Improvement of a New Schiff Base Derived Co (II) Complex in Rats. Sci Rep 2016; 6:38748. [PMID: 27958299 PMCID: PMC5153835 DOI: 10.1038/srep38748] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/15/2016] [Indexed: 12/14/2022] Open
Abstract
Co (II) complex (CMLA) was investigated to evaluate the rate of wound healing in rats. Animals were placed into four groups: gum acacia, Intrasite gel, 10 and 20 mg/ml of CMLA. Wounds were made on the dorsal neck area, then treated with Intrasite gel or CMLA; both of these treatments led to faster healing than with gum acacia. Histology of the wounds dressed with CMLA or Intrasite gel displayed a smaller scar width, required less time to heal and showed more collagen staining and fewer inflammatory cells in comparison to wounds dressed with the vehicle. Immunohistochemistry for Hsp70 and TGF-β showed greater staining intensity in the treated groups compared to the vehicle group. Bax staining was less intense in treated groups compared to the vehicle group, suggesting that CMLA and Intrasite gel provoked apoptosis, responsible for the development of granulation tissue into a scar. CD31 protein analysis showed that the treated groups enhanced angiogenesis and increased vascularization compared to the control group. Furthermore, a significant increase in the levels of GPx and SOD and a decrease in MDA were also observed in the treated groups. This results suggest that CMLA is a potentially promising agent for the wounds treatment.
Collapse
Affiliation(s)
- Rashd. M. El-Ferjani
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan DK, Malaysia
| | - Musa Ahmad
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan DK, Malaysia
| | - Summaya M. Dhiyaaldeen
- Department of Microbiology, Faculty of Medicine, University of Duhok, 78 Kurdistan, Iraq
| | - Farah Wahida Harun
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan DK, Malaysia
| | - Mohamed Yousif Ibrahim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hoyam Adam
- School of Pharmacy, Ahfad University for Women (AUW), 167 Omdurman, Sudan
| | - Bohari Mohd. Yamin
- School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor D.E., Malaysia
| | - Mazen M. Jamil Al-Obaidi
- Medical Microbiology Department, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rami Al Batran
- Medical Microbiology Department, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Research Management & Monitoring, Deputy Vice Chancellor (Research and Innovation), University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|