1
|
Liu Y, Li Y, Shao C, Wang P, Wang X, Li R. Curcumin-based residue-free and reusable photodynamic inactivation system for liquid foods and its application in freshly squeezed orange juice. Food Chem 2024; 458:140316. [PMID: 38968711 DOI: 10.1016/j.foodchem.2024.140316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
To enhance curcumin's application in photodynamic inactivation (PDI) of liquid foods, a supramolecular complex of biotin-modified β-cyclodextrin and curcumin (Biotin-CD@Cur) was synthesized. This complex significantly improves curcumin's solubility, stability, and PDI efficiency. Following PDI, Biotin-CD@Cur can be magnetically separated from the liquid matrix using streptavidin-coated magnetic beads (SA-MBs). Leveraging the reversible binding between streptavidin and biotin, Biotin-CD@Cur and SA-MBs fully dissociate in ultrapure water at 70 °C, enabling reuse. Antibacterial tests in freshly squeezed orange juice demonstrated that a low dose of 1.5 J/cm2 from a 420 nm LED array and 10 μg/mL of Biotin-CD@Cur achieved log reductions of 3.287 ± 0.015 for Staphylococcus aureus and 2.961 ± 0.011 for Listeria monocytogenes, while preserving the juice's flavor and nutritional contents. The PDI system remained effective for at least four cycles. Ultra-performance liquid chromatography and atomic absorption spectroscopy confirmed no residues of system components in the juice after magnetic separation.
Collapse
Affiliation(s)
- Yan Liu
- School of Food Engineering, Ludong University, Yantai 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China
| | - Yujie Li
- Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China
| | - Chen Shao
- School of Food Engineering, Ludong University, Yantai 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA
| | - Xiaoxuan Wang
- School of Food Engineering, Ludong University, Yantai 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China
| | - Runhe Li
- School of Food Engineering, Ludong University, Yantai 264025, Shandong, China
| |
Collapse
|
2
|
Zhang X, He Z. Cell Membrane Coated pH-Responsive Intelligent Bionic Delivery Nanoplatform for Active Targeting in Photothermal Therapy. Int J Nanomedicine 2023; 18:7729-7744. [PMID: 38115989 PMCID: PMC10729683 DOI: 10.2147/ijn.s436940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Aim To produce pH-responsive bionic high photothermal conversion nanoparticles actively targeting tumors for sensitizing photothermal therapy (PTT). Materials and Methods The bionic nanoparticles (ICG-PEI@HM NPs) were prepared by electrostatic adsorption of indocyanine green (ICG) coupled to polyethyleneimine (PEI) and modified with tumor cell membranes. In vitro and in vivo experiments were conducted to investigate the efficacy of ICG-PEI@HM-mediated PTT. Results The intelligent responsiveness of ICG-PEI@HM to pH promoted the accumulation of ICG and enhanced the PTT performance of ICG-PEI@HM NPs. Compared with free ICG, NPs exhibited great photothermal stability, cellular uptake, and active tumor targeting for PTT. Conclusion ICG-PEI@HM NPs can enhance the efficacy of PTT and can be used as a new strategy for the construction of photothermal agents.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Pathology, Jining No.1 People’s Hospital, Jining, Shandong, 272000, People’s Republic of China
| | - Zelai He
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College & Tumor Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| |
Collapse
|
3
|
Jo J, Kim JY, Yun JJ, Lee YJ, Jeong YIL. β-Cyclodextrin Nanophotosensitizers for Redox-Sensitive Delivery of Chlorin e6. Molecules 2023; 28:7398. [PMID: 37959817 PMCID: PMC10648776 DOI: 10.3390/molecules28217398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study is to prepare redox-sensitive nanophotosensitizers for the targeted delivery of chlorin e6 (Ce6) against cervical cancer. For this purpose, Ce6 was conjugated with β-cyclodextrin (bCD) via a disulfide bond, creating nanophotosensitizers that were fabricated for the redox-sensitive delivery of Ce6 against cancer cells. bCD was treated with succinic anhydride to synthesize succinylated bCD (bCDsu). After that, cystamine was attached to the carboxylic end of bCDsu (bCDsu-ss), and the amine end group of bCDsu-ss was conjugated with Ce6 (bCDsu-ss-Ce6). The chemical composition of bCDsu-ss-Ce6 was confirmed with 1H and 13C NMR spectra. bCDsu-ss-Ce6 nanophotosensitizers were fabricated by a dialysis procedure. They formed small particles with an average particle size of 152.0 ± 23.2 nm. The Ce6 release rate from the bCDsu-ss-Ce6 nanophotosensitizers was accelerated by the addition of glutathione (GSH), indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive photosensitizer delivery capacity. The bCDsu-ss-Ce6 nanophotosensitizers have a low intrinsic cytotoxicity against CCD986Sk human skin fibroblast cells as well as Ce6 alone. However, the bCDsu-ss-Ce6 nanophotosensitizers showed an improved Ce6 uptake ratio, higher reactive oxygen species (ROS) production, and phototoxicity compared to those of Ce6 alone. GSH addition resulted in a higher Ce6 uptake ratio, ROS generation, and phototoxicity than Ce6 alone, indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive biological activity in vitro against HeLa human cervical cancer cells. In a tumor xenograft model using HeLa cells, the bCDsu-ss-Ce6 nanophotosensitizers efficiently accumulated in the tumor rather than in normal organs. In other words, the fluorescence intensity in tumor tissues was significantly higher than that of other organs, while Ce6 alone did not specifically target tumor tissue. These results indicated a higher anticancer activity of bCDsu-ss-Ce6 nanophotosensitizers, as demonstrated by their efficient inhibition of the growth of tumors in an in vivo animal tumor xenograft study.
Collapse
Affiliation(s)
- Jaewon Jo
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Yoon Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
| | - Je-Jung Yun
- Research Center for Environmentally Friendly Agricultural Life Sciences, Jeonnam Bioindustry Foundation, Jeonnam 58275, Republic of Korea;
| | - Young Ju Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
| | - Young-IL Jeong
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
- Tyros Biotechnology Inc., 75 Kneeland St. 14 Floors, Boston, MA 02111, USA
| |
Collapse
|
4
|
Lu Q. Bioresponsive and multifunctional cyclodextrin-based non-viral nanocomplexes in cancer therapy: Building foundations for gene and drug delivery, immunotherapy and bioimaging. ENVIRONMENTAL RESEARCH 2023; 234:116507. [PMID: 37364628 DOI: 10.1016/j.envres.2023.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The interest towards application of nanomaterials in field of cancer therapy is that the drawbacks of conventional therapies including chemoresistance, radio-resistance and lack of specific targeting of tumor cells can be solved by nanotechnology. Cyclodextrins (CDs) are amphiphilic cyclic oligosaccharides that can be present in three forms of α-, β- and γ-CDs, and they can be synthesized from natural sources. The application of CDs in cancer shows an increasing trend due to benefits of these nanocomplexes in improving solubility and bioavailability of current bioactives and therapeutics for cancer. CDs are widely utilized in delivery of drugs and genes in cancer therapy, and by targeted delivery of these therapeutics into target site, they improve anti-proliferative and anti-cancer potential. The blood circulation time and tumor site accumulation of therapeutics can be improved using CD-based nanostructures. More importantly, the stimuli-responsive types of CDs including pH-, redox- and light-sensitive types can accelerate release of bioactive compound at tumor site. Interestingly, the CDs are able to mediate photothermal and photodynamic impact in impairing tumorigenesis in cancer, enhancing cell death and improving response to chemotherapy. In improving the targeting ability of CDs, their surface functionalization with ligands has been conducted. Moreover, CDs can be modified with green products such as chitosan and fucoidan, and they can be embedded in green-based nanostructures to suppress tumorigenesis. The internalization of CDs into tumor cells can occur through endocytosis and this can be clethrin-, caveolae- or receptor-mediated endocytosis. Furthermore, CDs are promising candidates in bioimaging, cancer cell and organelle imaging as well as isolating tumor cells. The main benefits of using CDs in cancer therapy including sustained and low release of drugs and genes, targeted delivery, bioresponsive release of cargo, ease of surface functionalization and complexation with other nanostructures. The application of CDs in overcoming drug resistance requires more investigation.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
5
|
Hak A, Ali MS, Sankaranarayanan SA, Shinde VR, Rengan AK. Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine. ACS APPLIED BIO MATERIALS 2023; 6:349-364. [PMID: 36700563 DOI: 10.1021/acsabm.2c00891] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers and minimal side effects. A photosensitizer is the key component of photodynamic therapy (PDT) that generates cytotoxic reactive oxygen species to eradicate cancer cells. As the therapeutic effectivity of PDT greatly depends upon the photosensitizer, great efforts have been made to search for an ideal photosensitizer. Chlorin e6 is a FDA approved second generation photosensitizer that meets the desired clinical properties for PDT. It is known for its high reactive oxygen species (ROS) generation ability and anticancer potency against many types of cancer. Hydrophobicity is a major drawback of Ce6 that leads to its poor biodistribution and rapid clearance from the circulatory system. To overcome this drawback, researchers have designed and fabricated several types of nanosystems, which can enhance Ce6 solubility and thereby enhance its bioavailability. These nanosystems also improve tumor accumulation of Ce6 by selectively targeting the cancer cells through passive and active targeting. In addition, Ce6 has been employed in many combination therapies like chemo-photodynamic therapy, photoimmunotherapy, and combined photodynamic-photothermal therapy. A combination therapy is more curative than a single therapy due to the synergistic effects of individual therapies. Ce6-based nanosystems for combination therapies have shown excellent results in various studies and provide a promising platform for cancer treatment.
Collapse
Affiliation(s)
- Arshadul Hak
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | | | - Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| |
Collapse
|
6
|
Ayoub AM, Gutberlet B, Preis E, Abdelsalam AM, Abu Dayyih A, Abdelkader A, Balash A, Schäfer J, Bakowsky U. Parietin Cyclodextrin-Inclusion Complex as an Effective Formulation for Bacterial Photoinactivation. Pharmaceutics 2022; 14:357. [PMID: 35214089 PMCID: PMC8875783 DOI: 10.3390/pharmaceutics14020357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Multidrug resistance in pathogenic bacteria has become a significant public health concern. As an alternative therapeutic option, antimicrobial photodynamic therapy (aPDT) can successfully eradicate antibiotic-resistant bacteria with a lower probability of developing resistance or systemic toxicity commonly associated with the standard antibiotic treatment. Parietin (PTN), also termed physcion, a natural anthraquinone, is a promising photosensitizer somewhat underrepresented in aPDT because of its poor water solubility and potential to aggregate in the biological environment. This study investigated whether the complexation of PTN with (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) could increase its solubility, enhance its photophysical properties, and improve its phototoxicity against bacteria. At first, the solubilization behavior and complexation constant of the PTN/HP-β-CD inclusion complexes were evaluated by the phase solubility method. Then, the formation and physicochemical properties of PTN/HP-β-CD complexes were analyzed and confirmed in various ways. At the same time, the photodynamic activity was assessed by the uric acid method. The blue light-mediated photodegradation of PTN in its free and complexed forms were compared. Complexation of PTN increased the aqueous solubility 28-fold and the photostability compared to free PTN. PTN/HP-β-CD complexes reduce the bacterial viability of Staphylococcus saprophyticus and Escherichia coli by > 4.8 log and > 1.0 log after irradiation, respectively. Overall, the low solubility, aggregation potential, and photoinstability of PTN were overcome by its complexation in HP-β-CD, potentially opening up new opportunities for treating infections caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Abdallah Mohamed Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Ahmed Mohamed Abdelsalam
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Alice Abu Dayyih
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Ayat Abdelkader
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Amir Balash
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 10, 35032 Marburg, Germany;
| | - Jens Schäfer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| |
Collapse
|
7
|
Li H, Chang SL, Chang TR, You Y, Wang XD, Wang LW, Yuan XF, Tan MH, Wang PD, Xu PW, Gao WB, Zhao QS, Zhao B. Inclusion complexes of cannabidiol with β-cyclodextrin and its derivative: Physicochemical properties, water solubility, and antioxidant activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Wang Y, Luo S, Wu Y, Tang P, Liu J, Liu Z, Shen S, Ren H, Wu D. Highly Penetrable and On-Demand Oxygen Release with Tumor Activity Composite Nanosystem for Photothermal/Photodynamic Synergetic Therapy. ACS NANO 2020; 14:17046-17062. [PMID: 33290657 DOI: 10.1021/acsnano.0c06415] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A deep penetrating and pH-responsive composite nanosystem was strategically developed to improve the efficacy of synergetic photothermal/photodynamic therapy (PTT/PDT) against hypoxic tumor. The designed nanosystem ([PHC]PP@HA NPs) was constructed by coloading hemoglobin (Hb) and chlorin e6 on polydopamine to build small-sized PHC NPs, which were encapsulated inside the polymer micelles (poly(ethylene glycol)-poly(ethylenimine)) and then capped with functionalized hyaluronic acid. The pH-responsive feature made [PHC]PP@HA NPs retain an initial size of ∼140 nm in blood circulation but rapidly release small PHC NPs (∼10 nm) with a high tumor-penetrating ability in the tumor microenvironment. The in vitro penetration experiment showed that the penetration depth of PHC NPs in the multicellular tumor spheroids exceeded 110 μm. The [PHC]PP@HA NPs exhibited excellent biocompatibility, deep tumor permeability, high photothermal conversion efficiency (47.09%), and low combination index (0.59) under hypoxic conditions. Notably, the nanosystem can freely adjust the release of oxygen and damaging PHC NPs in an on-demand manner on the basis of the feedback of tumor activity. This feedback tumor therapy significantly improved the synergistic effect of PTT/PDT and reduced its toxic side effects. The in vivo antitumor results showed that the tumor inhibition rate of [PHC]PP@HA NPs with an on-demand oxygen supply of Hb was ∼100%, which was much better than those of PTT alone and Hb-free nanoparticles ([PC]PP@HA NPs). Consequently, the [PHC]PP@HA NP-mediated PTT/PDT guided by feedback tumor therapy achieved an efficient tumor ablation with an extremely low tumor recurrence rate (8.3%) 60 d later, indicating the versatile potential of PTT/PDT.
Collapse
Affiliation(s)
- Ya Wang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Siyuan Luo
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Youshen Wu
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Peng Tang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiajun Liu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zeying Liu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shihong Shen
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Haozhe Ren
- Health Science Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P. R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
9
|
Xu T, Ma Y, Yuan Q, Hu H, Hu X, Qian Z, Rolle JK, Gu Y, Li S. Enhanced Ferroptosis by Oxygen-Boosted Phototherapy Based on a 2-in-1 Nanoplatform of Ferrous Hemoglobin for Tumor Synergistic Therapy. ACS NANO 2020; 14:3414-3425. [PMID: 32155051 DOI: 10.1021/acsnano.9b09426] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Photodynamic therapy (PDT) combined with oxygenating strategies is widely employed in cancer treatment; however, oxygen-boosted PDT has failed to achieve an ideal effect due to the complexity, heterogeneity, and irreversible hypoxic environment generated by tumor tissues. With the emergence of Fe-dependent ferroptosis boasting reactive oxygen species (ROS) cytotoxicity as well, such a chemodynamic approach to cancer therapy has drawn extensive attention. In this study, hemoglobin (Hb) is connected with the photosensitizer chlorin e6 (Ce6) to construct a 2-in-1 nanoplatform (SRF@Hb-Ce6) with Sorafenib (SRF, ferroptosis promotor) loaded, combining oxygen-boosted PDT and potent ferroptosis. Benefiting from the intrinsic presence of Fe capable of binding oxygen, hemoglobin concurrently furnishes oxygen for oxygen-dependent PDT and Fe for Fe-dependent ferroptosis. Furthermore, amphiphilic MMP2-responsive peptide is incorporated into the skeleton of the nanoplatform to ensure drug-release specificity for safety improvement. Correlative measurements demonstrate the potentiation of PDT and ferroptosis with SRF@Hb-Ce6. More importantly, PDT strengthens ferroptosis by recruiting immune cells to secrete IFN-γ, which can sensitize the tumor to ferroptosis in our findings. The therapeutic effect of synergistic treatment with SRF@Hb-Ce6 in vitro and in vivo was proven significant, revealing the promising prospects of combined PDT and ferroptosis therapy with the 2-in-1 nanoplatform.
Collapse
Affiliation(s)
- Tian Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Yuying Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Qinling Yuan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Huixin Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Xinkai Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, School of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
| | - Janiqua Kyiesha Rolle
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Siwen Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| |
Collapse
|
10
|
Yang K, Zhang Z, Du J, Li W, Pei Z. Host–guest interaction based supramolecular photodynamic therapy systems: a promising candidate in the battle against cancer. Chem Commun (Camb) 2020; 56:5865-5876. [DOI: 10.1039/d0cc02001j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article summarizes recent advances in the development of supramolecular photodynamic therapy based on host–guest interactions.
Collapse
Affiliation(s)
- Kui Yang
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Zhihua Zhang
- Chimie ParisTech
- PSL University
- CNRS
- Institut de Recherche de Chimie Paris
- 75231 Paris
| | - Jie Du
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Wei Li
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
11
|
Mavridis IM, Yannakopoulou K. Porphyrinoid-Cyclodextrin Assemblies in Biomedical Research: An Update. J Med Chem 2019; 63:3391-3424. [PMID: 31808344 DOI: 10.1021/acs.jmedchem.9b01069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porphyrinoids, well-known cofactors in fundamental processes of life, have stimulated interest as synthetic models of natural systems and integral components of photodynamic therapy, but their utilization is compromised by self-aggregation in aqueous media. The capacity of cyclodextrins to include hydrophobic molecules in their cavity provides porphyrinoids with a protective environment against oxidation and the ability to disperse efficiently in biological fluids. Moreover, engineered cyclodextrin-porphyrinoid assemblies enhance the photodynamic abilities of porphyrinoids, can carry chemotherapeutics for synergistic modalities, and can be enriched with functions including cell recognition, tissue penetration, and imaging. This Perspective includes synthetic porphyrinoid-cyclodextrin models of proteins participating in fundamental processes, such as enzymatic catalysis, respiration, and electron transfer. In addition, since porphyrinoid-cyclodextrin systems comprise third generation photosensitizers, recent developments for their utilization in photomedicine, that is, multimodal therapy for cancer (e.g., PDT, PTT) and antimicrobial treatment, and eventually in biocompatible therapeutic or diagnostic platforms for next-generation nanomedicine and theranostics are discussed.
Collapse
Affiliation(s)
- Irene M Mavridis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Gregoriou & 27 Neapoleos Str., Agia Paraskevi, Attiki 15341, Greece
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Gregoriou & 27 Neapoleos Str., Agia Paraskevi, Attiki 15341, Greece
| |
Collapse
|
12
|
Maltosyl-β-cyclodextrin mediated SupramolecularHost-Guest inclusion complex used for enhancing baicalin antioxidant activity and bioavailability. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Aggarwal A, Samaroo D, Jovanovic IR, Singh S, Tuz MP, Mackiewicz MR. Porphyrinoid-based photosensitizers for diagnostic and therapeutic applications: An update. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Porphyrin-based molecules are actively studied as dual function theranostics: fluorescence-based imaging for diagnostics and fluorescence-guided therapeutic treatment of cancers. The intrinsic fluorescent and photodynamic properties of the bimodal molecules allows for these theranostic approaches. Several porphyrinoids bearing both hydrophilic and/or hydrophobic units at their periphery have been developed for the aforementioned applications, but better tumor selectivity and high efficacy to destroy tumor cells is always a key setback for their use. Another issue related to their effective clinical use is that, most of these chromophores form aggregates under physiological conditions. Nanomaterials that are known to possess incredible properties that cannot be achieved from their bulk systems can serve as carriers for these chromophores. Porphyrinoids, when conjugated with nanomaterials, can be enabled to perform as multifunctional nanomedicine devices. The integrated properties of these porphyrinoid-nanomaterial conjugated systems make them useful for selective drug delivery, theranostic capabilities, and multimodal bioimaging. This review highlights the use of porphyrins, chlorins, bacteriochlorins, phthalocyanines and naphthalocyanines as well as their multifunctional nanodevices in various biomedical theranostic platforms.
Collapse
Affiliation(s)
- Amit Aggarwal
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Diana Samaroo
- New York City College of Technology, Department of Chemistry, 285 Jay Street, Brooklyn, NY 11201, USA
- Graduate Center, 365 5th Ave, New York, NY 10016, USA
| | | | - Sunaina Singh
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Michelle Paola Tuz
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | | |
Collapse
|
14
|
Khurana B, Gierlich P, Meindl A, Gomes-da-Silva LC, Senge MO. Hydrogels: soft matters in photomedicine. Photochem Photobiol Sci 2019; 18:2613-2656. [PMID: 31460568 DOI: 10.1039/c9pp00221a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT), a shining beacon in the realm of photomedicine, is a non-invasive technique that utilizes dye-based photosensitizers (PSs) in conjunction with light and oxygen to produce reactive oxygen species to combat malignant tissues and infectious microorganisms. Yet, for PDT to become a common, routine therapy, it is still necessary to overcome limitations such as photosensitizer solubility, long-term side effects (e.g., photosensitivity) and to develop safe, biocompatible and target-specific formulations. Polymer based drug delivery platforms are an effective strategy for the delivery of PSs for PDT applications. Among them, hydrogels and 3D polymer scaffolds with the ability to swell in aqueous media have been deeply investigated. Particularly, hydrogel-based formulations present real potential to fulfill all requirements of an ideal PDT platform by overcoming the solubility issues, while improving the selectivity and targeting drawbacks of the PSs alone. In this perspective, we summarize the use of hydrogels as carrier systems of PSs to enhance the effectiveness of PDT against infections and cancer. Their potential in environmental and biomedical applications, such as tissue engineering photoremediation and photochemistry, is also discussed.
Collapse
Affiliation(s)
- Bhavya Khurana
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland.
| | - Piotr Gierlich
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and CQC, Coimbra Chemistry Department, University of Coimbra, Coimbra, Portugal
| | - Alina Meindl
- Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | | | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany and Institute for Advanced Study (TUM-IAS), Technische Universität München, Lichtenberg-Str. 2a, 85748 Garching, Germany
| |
Collapse
|
15
|
Wang T, Zhang H, Han Y, Liu H, Ren F, Zeng J, Sun Q, Li Z, Gao M. Light-Enhanced O 2-Evolving Nanoparticles Boost Photodynamic Therapy To Elicit Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16367-16379. [PMID: 30994323 DOI: 10.1021/acsami.9b03541] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Breast cancer remains to show high mortality and poor prognosis in women despite of significant progress in recent diagnosis and treatment. Herein, we report the rational design of a highly efficient ultrasmall nanotheranostic agent with excellent photodynamic therapy (PDT) performance to against breast cancer and its metastasis by eliciting antitumor immunity. The ultrasmall nanoagent (3.1 ± 0.4 nm) was fabricated from polyethylene glycol modified Cu2- xSe nanoparticles, β-cyclodextrin, and chlorin e6 under ambient conditions. The resultant nanoplatform (CS-CD-Ce6 NPs) can be passively accumulated into the tumor to exhibit dramatic antitumor efficacy through the excellent PDT effect under near-infrared irradiation. The excellent PDT performance of this nanoplatform is owing to its role as a Fenton-like Haber-Weiss catalyst for the efficient degradation of H2O2 within the tumor to release hydroxyl radicals (·OH) and very toxic singlet oxygen (1O2) under irradiation. The generated vast amounts of reactive oxygen species not only killed primary tumor cells but also elicited immunogenic cell death (ICD) to release damage-associated molecular patterns (DAMPs) and induced proinflammatory M1-macrophages polarization. Thereby, antitumor immune responses against the metastasis of breast cancer were robustly evoked. Our work demonstrates that ultrasmall Cu2- xSe nanoparticle-based nanoplatform offers a promising way to prevent cancer metastasis via immunogenic effects through its excellent PDT performance.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| |
Collapse
|
16
|
Ben Mihoub A, Larue L, Moussaron A, Youssef Z, Colombeau L, Baros F, Frochot C, Vanderesse R, Acherar S. Use of Cyclodextrins in Anticancer Photodynamic Therapy Treatment. Molecules 2018; 23:E1936. [PMID: 30072672 PMCID: PMC6222782 DOI: 10.3390/molecules23081936] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/19/2018] [Accepted: 07/28/2018] [Indexed: 12/22/2022] Open
Abstract
Photodynamic therapy (PDT) is mainly used to destroy cancerous cells; it combines the action of three components: a photoactivatable molecule or photosensitizer (PS), the light of an appropriate wavelength, and naturally occurring molecular oxygen. After light excitation of the PS, the excited PS then reacts with molecular oxygen to produce reactive oxygen species (ROS), leading to cellular damage. One of the drawbacks of PSs is their lack of solubility in water and body tissue fluids, thereby causing low bioavailability, drug-delivery efficiency, therapeutic efficacy, and ROS production. To improve the water-solubility and/or drug delivery of PSs, using cyclodextrins (CDs) is an interesting strategy. This review describes the in vitro or/and in vivo use of natural and derived CDs to improve antitumoral PDT efficiency in aqueous media. To achieve these goals, three types of binding modes of PSs with CDs are developed: non-covalent CD⁻PS inclusion complexes, covalent CD⁻PS conjugates, and CD⁻PS nanoassemblies. This review is divided into three parts: (1) non-covalent CD-PS inclusion complexes, covalent CD⁻PS conjugates, and CD⁻PS nanoassemblies, (2) incorporating CD⁻PS systems into hybrid nanoparticles (NPs) using up-converting or other types of NPs, and (3) CDs with fullerenes as PSs.
Collapse
Affiliation(s)
- Amina Ben Mihoub
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | - Ludivine Larue
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Albert Moussaron
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | - Zahraa Youssef
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Ludovic Colombeau
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Francis Baros
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Régis Vanderesse
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | - Samir Acherar
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
17
|
Paul S, Heng PWS, Chan LW. Improvement in dissolution rate and photodynamic efficacy of chlorin e6 by sucrose esters as drug carrier in nanosuspension formulation: optimisation and in vitro characterisation. ACTA ACUST UNITED AC 2018; 70:1152-1163. [PMID: 29943465 DOI: 10.1111/jphp.12947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/28/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Chlorin e6 is a poorly water-soluble photoactive drug. Its monomers form aggregates at the tumour physiological pH, which drastically reduces its photodynamic efficacy. This study aimed to improve the dissolution rate and photodynamic efficacy of chlorin e6 by nanosuspension formulation using biodegradable sucrose esters as drug carrier. METHODS A modified emulsion-solvent diffusion method was used to prepare the nanosuspension, where amount of Ce6, ratio of sucrose monopalmitate to sucrose monolaurate as carrier and ratio of dichloromethane to acetone as solvent, were varied using central composite design. Particle size, zeta potential, encapsulation efficiency and in vitro drug release characteristics of the nanosuspensions were evaluated. The formulation was optimised by response surface methodology and its photodynamic efficacy evaluated. KEY FINDINGS The optimised nanosuspension had mean particle size of ~200 nm, 88% drug encapsulation efficiency and faster drug release compared to pure Ce6. Spectroscopic studies showed that Ce6 exists in monomeric form in the carrier, which facilitated a remarkable increase in cellular uptake, in vitro singlet oxygen generation and cytotoxicity to oral squamous carcinoma cells. CONCLUSIONS The dissolution rate and photodynamic efficacy of Ce6 were markedly improved by formulating the drug as a nanosuspension with sucrose esters as drug carrier.
Collapse
Affiliation(s)
- Shubhajit Paul
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Paul Wan Sia Heng
- GEANUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Lai Wah Chan
- GEANUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Encapsulation Mechanism of Oxyresveratrol by β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin and Computational Analysis. Molecules 2017; 22:molecules22111801. [PMID: 29088059 PMCID: PMC6150350 DOI: 10.3390/molecules22111801] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
In this study, the encapsulation mechanism of oxyresveratrol and β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) was studied. As this research shows, oxyresveratrol and two cyclodextrins (CDs) were able to form inclusion complexes in a 1:1 stoichiometry. However, the interaction with HP-β-CD was more efficient, showing up as higher encapsulation constant (KF) (35,864.72 ± 3415.89 M−1). The KF values exhibited a strong dependence on temperature and pH, which decreased as they increased. From the thermodynamic parameters (ΔH0, ΔS0, and ΔG0) of the oxyresveratrol loaded β-CD (oxyresveratrol-β-CD) and HP-β-CD (oxyresveratrol-HP-β-CD), it could be seen that the complexation process was spontaneous and exothermic, and the main driving forces between oxyrsveratrol and CDs were hydrogen bonding and van der waals force. Besides, molecular docking combined with 1H-NMR were used to explain the most possible mode of interactions between oxyresveratrol and CDs.
Collapse
|
19
|
Tovsen ML, Tho I, Tønnesen HH. Viscosity reduction of isotonic solutions of the photosensitizer TPCS 2a by cyclodextrin complexation. Drug Dev Ind Pharm 2017; 44:261-265. [PMID: 28956453 DOI: 10.1080/03639045.2017.1386210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Meso-tetraphenyl chlorin disulphonate (TPCS2a) is a photosensitizer (PS) particularly developed and patented for use in the technology of photochemical internalization (PCI) against cancer. TPCS2a is known to aggregate in aqueous media even at low concentrations (≥0.1 µM) and to form a high-viscosity network at clinically relevant concentrations (mM). The aim of this work was to evaluate the effect of two hydroxypropylated cyclodextrin derivatives of beta and gamma type, respectively i.e. HPβCD and HPγCD, on the aggregation and solubilization of TPCS2a in isotonic solutions. Samples containing micromolar concentrations of TPCS2a were studied spectrophotometrically, while samples containing a clinical relevant concentration (10 mM = 9 mg/ml) of TPCS2a were evaluated by dynamic viscosity measurements. HPβCD was determined to be a more suitable solubilizer of TPCS2a than HPγCD in aqueous media both in the absence and presence of salt. The complexation stoichiometry between TPCS2a/HPβCD at micromolar to millimolar concentrations of TPCS2a was determined to be 1:3 and 1:2 in the absence and presence of isotonic NaCl, respectively. The network of TPCS2a (10 mM) was broken down in the presence of 3% w/v (= 20 mM) HPβCD, i.e. a 1:2 molar ratio between TPCS2a and the cyclodextrin. Formation of the inclusion complex resulted in low viscosity samples both in water and in the presence of isotonic NaCl or phosphate buffered saline (PBS) at 25 °C and 37 °C.
Collapse
Affiliation(s)
- Marianne Lilletvedt Tovsen
- a Division Pharmaceutics, PharmaLuxLab, Department of Pharmacy, School of Pharmacy , University of Oslo , Oslo , Norway
| | - Ingunn Tho
- a Division Pharmaceutics, PharmaLuxLab, Department of Pharmacy, School of Pharmacy , University of Oslo , Oslo , Norway
| | - Hanne Hjorth Tønnesen
- a Division Pharmaceutics, PharmaLuxLab, Department of Pharmacy, School of Pharmacy , University of Oslo , Oslo , Norway
| |
Collapse
|
20
|
Choi JM, Lee B, Jeong D, Park KH, Choi EJ, Jeon YJ, Dindulkar SD, Cho E, Do SH, Lee K, Lee IS, Park S, Jun BH, Yu JH, Jung S. Characterization and regulated naproxen release of hydroxypropyl cyclosophoraose-pullulan microspheres. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Li J, Jiang Q, Deng P, Chen Q, Yu M, Shang J, Li W. The formation of a host-guest inclusion complex system between β-cyclodextrin and baicalin and its dissolution characteristics. J Pharm Pharmacol 2017; 69:663-674. [DOI: 10.1111/jphp.12708] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022]
Abstract
Abstract
Objectives
Baicalin (BCL) has potential therapeutic benefits, but its clinical outcomes are restricted mainly because of low water solubility. This study sought to improve the water solubility of BCL by the formation of inclusion complex with β-cyclodextrin (β-CD).
Methods
The inclusion complex was studied by solubility test, differential scanning calorimeter (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), 1H Nuclear magnetic resonance (1HNMR) and scanning electron microscopy (SEM). Molecular docking was conducted to verify the experimental findings. The dissolution rate was determined by dialysis membrane method. In vivo absorption studies in rats were conducted and high-performance liquid chromatography (HPLC) was used to analyse the plasma level of BCL after oral administration.
Key findings
The DSC, FTIR, XRD, 1HNMR and SEM findings suggested the formation of inclusion complex between BCL and β-CD in 1 : 1 stoichiometry. Molecular docking demonstrated the insertion of benzene ring of BCL into β-CD cavity by hydrophobic interactions and possible H-bond formation. Moreover, β-CD markedly improved the solubility of BCL and displayed AL-type phase diagrams. The improvement in dissolution rate of the inclusion complex was reflected in the earlier Tmax, higher Cmax and larger AUC0–t than that of BCL after oral administration.
Conclusions
β-cyclodextrin complex can be used as an effective formulation strategy for development of BCL-loaded delivery system with better therapeutic outcomes.
Collapse
Affiliation(s)
- Jing Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qihua Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ping Deng
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qian Chen
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Mingan Yu
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jingchuan Shang
- Department of Pharmaceutical Analysis, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Chen Q, Li C, Yang X, Huang J, Liu S, Liu W, Liu J, Wang K. Self-assembled DNA nanowires as quantitative dual-drug nanocarriers for antitumor chemophotodynamic combination therapy. J Mater Chem B 2017; 5:7529-7537. [DOI: 10.1039/c7tb01590a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Self-assembled DNA nanowires were fabricated through a supersandwich hybridization reaction and co-loaded with a photosensitizer chlorin e6 (Ce6) and a chemotherapeutic drug doxorubicin (DOX) for antitumor chemophotodynamic combination therapy.
Collapse
Affiliation(s)
- Qiaoshu Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Chunying Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Songyang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Wei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|