1
|
Endocannabinoid System and Its Regulation by Polyunsaturated Fatty Acids and Full Spectrum Hemp Oils. Int J Mol Sci 2021; 22:ijms22115479. [PMID: 34067450 PMCID: PMC8196941 DOI: 10.3390/ijms22115479] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
The endocannabinoid system (ECS) consists of endogenous cannabinoids, their receptors, and metabolic enzymes that play a critical homeostatic role in modulating polyunsaturated omega fatty acid (PUFA) signaling to maintain a balanced inflammatory and redox state. Whole food-based diets and dietary interventions linked to PUFAs of animal (fish, calamari, krill) or plant (hemp, flax, walnut, algae) origin, as well as full-spectrum hemp oils, are increasingly used to support the ECS tone, promote healthy metabolism, improve risk factors associated with cardiovascular disorders, encourage brain health and emotional well-being, and ameliorate inflammation. While hemp cannabinoids of THC and CBD groups show distinct but complementary actions through a variety of cannabinoid (CB1 and CB2), adenosine (A2A), and vanilloid (TRPV1) receptors, they also modulate PUFA metabolism within a wide variety of specialized lipid mediators that promote or resolve inflammation and oxidative stress. Clinical evidence reviewed in this study links PUFAs and cannabinoids to changes in ECS tone, immune function, metabolic and oxidative stress adaptation, and overall maintenance of a well-balanced systemic function of the body. Understanding how the body coordinates signals from the exogenous and endogenous ECS modulators is critical for discerning the underlying molecular mechanisms of the ECS tone in healthy and disease states. Nutritional and lifestyle interventions represent promising approaches to address chronic metabolic and inflammatory disorders that may overlap in the population at risk. Further investigation and validation of dietary interventions that modulate the ECS are required in order to devise clinically successful second-generation management strategies.
Collapse
|
2
|
He XL, Yang L, Wang ZJ, Huang RQ, Zhu RR, Cheng LM. Solid lipid nanoparticles loading with curcumin and dexanabinol to treat major depressive disorder. Neural Regen Res 2021; 16:537-542. [PMID: 32985484 PMCID: PMC7996013 DOI: 10.4103/1673-5374.293155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dexanabinol (HU-211) is an artificially synthesized cannabinoid derivative that exerts neuroprotective effects through anti-inflammatory and antioxidant effects. Curcumin exhibits antidepressant effects in the treatment of major depressive disorder. To investigate the antidepressant effects of solid lipid nanoparticles loaded with both curcumin and dexanabinol, and the underlying mechanisms associated with this combination, we established wild-type (CBR1+/+) and cannabinoid receptor 1 (CBR1) knockout (CBR1–/–) mouse models of major depressive disorder, through the intraperitoneal injection of corticosterone, for 3 successive days, followed by treatment with intraperitoneal injections of solid lipid nanoparticles loading with curcumin (20 mg/kg) and dexanabinol (0.85 mg/kg), for 2 successive days. Our results revealed that solid lipid nanoparticle loading with curcumin and dexanabinol increased the mRNA and protein expression levels of the mature neuronal markers neuronal nuclei, mitogen-activated protein 2, and neuron-specific beta-tubulin III, promoted the release of dopamine and norepinephrine, and increased the mRNA expression of CBR1 and the downstream genes Rasgef1c and Egr1, and simultaneously improved rat locomotor function. However, solid lipid nanoparticles loaded with curcumin and dexanabinol had no antidepressant effects on the CBR1–/– mouse models of major depressive disorder. This study was approved by the Institutional Ethics Committee of Tongji Hospital of Tongji University, China (approval No. 2017-DW-020) on May 24, 2017.
Collapse
Affiliation(s)
- Xiao-Lie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Li Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhao-Jie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Rui-Qi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Rong-Rong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Li-Ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Poleszak E, Wośko S, Sławińska K, Wyska E, Szopa A, Świąder K, Wróbel A, Szponar J, Doboszewska U, Wlaź P, Wlaź A, Serefko A. Influence of the endocannabinoid system on the antidepressant activity of bupropion and moclobemide in the behavioural tests in mice. Pharmacol Rep 2020; 72:1562-1572. [PMID: 32221841 PMCID: PMC7704509 DOI: 10.1007/s43440-020-00088-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022]
Abstract
Background Though there are several classes of antidepressant drugs available on the pharmaceutical market, depression that affects globally over 320 million people is still undertreated. Scientists have made attempts to develop novel therapeutical strategies to maximize effectiveness of therapy and minimize undesired reactions. One of the ideas is use of either dual-action agents or combined administration of two substances that affect diverse neurotransmissions. Thus, we investigated whether the selected CB receptor ligands (oleamide, AM251, JWH133, and AM630) can have an impact on the activity of bupropion and moclobemide. Bupropion belongs to the dual acting drugs, whereas moclobemide is an inhibitor of monoamine oxidase. Methods The mice forced swim test and the tail suspension test were applied in order to determine the potential antidepressant-like activity, whereas the HPLC method was used in order to assess the brain concentrations of the tested antidepressants. Results An intraperitoneal injection of sub-effective doses of oleamide (5 mg/kg), AM251 (0.25 mg/kg), and AM630 (0.25 mg/kg) increased activity of bupropion (10 mg/kg) in both behavioural tests. Effects of moclobemide (1.5 mg/kg) were potentiated only by AM251. These results were not influenced by the hypo- or hyperlocomotion of animals. Conclusion The outcomes of the present study revealed that particularly activation or inhibition of the CB1 receptor function may augment the antidepressant activity of bupropion, whereas only inhibition of the CB1 receptor function manages to increase activity of moclobemide. Most probably, an interplay between CB receptor ligands and bupropion or moclobemide takes place at the cellular level.
Collapse
Affiliation(s)
- Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| | - Sylwia Wośko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Karolina Sławińska
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Katarzyna Świąder
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Jarosław Szponar
- Toxicology Clinic, Medical University of Lublin: Clinical Department of Toxicology and Cardiology, Stefan Wyszyński Regional Specialist Hospital in Lublin, Al. Kraśnicka 100, Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| |
Collapse
|
4
|
Poleszak E, Wośko S, Sławińska K, Wyska E, Szopa A, Doboszewska U, Wlaź P, Wlaź A, Dudka J, Szponar J, Serefko A. Influence of the CB1 cannabinoid receptors on the activity of the monoaminergic system in the behavioural tests in mice. Brain Res Bull 2019; 150:179-185. [DOI: 10.1016/j.brainresbull.2019.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022]
|