1
|
Teerawonganan P, Hasriadi, Dasuni Wasana PW, Angsuwattana P, Suksamrarn A, Nalinratana N, Vajragupta O, Towiwat P, Thitikornpong W, Rojsitthisak P. Synthesis, Cytotoxicity, and Mechanistic Evaluation of Tetrahydrocurcumin-Amino Acid Conjugates as LAT1-Targeting Anticancer Agents in C6 Glioma Cells. Int J Mol Sci 2024; 25:11266. [PMID: 39457050 PMCID: PMC11509005 DOI: 10.3390/ijms252011266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastoma, a fatal brain cancer with limited treatments and poor prognosis, could benefit from targeting the L-type amino acid transporter I (LAT1). LAT1 is essential for cancer cells to acquire necessary amino acids. Tetrahydrocurcumin (THC), a key curcumin derivative, shows potential for glioblastoma treatment. However, its effectiveness is hindered by poor physicochemical and pharmacokinetic properties. Therefore, this study aims to improve the therapeutic efficacy of THC against glioblastoma by chemically modifying it to target LAT1. A novel series of THC-amino acid conjugates were synthesized by conjugating five amino acids: glycine, leucine, isoleucine, and phenylalanine to THC via carbamate bonds. The therapeutic efficacy of THC-amino acid conjugates was further examined in C6 glioma cells, including the role of LAT1 in their therapeutic effects. Among the conjugates tested, THC conjugated with two phenylalanines (THC-di-Phe) showed remarkably higher cytotoxicity against C6 glioma cells (35.8 μM) compared to THC alone (110.7 μM). THC-di-Phe induced cellular death via necrosis and apoptosis, outperforming THC. Additionally, THC-di-Phe inhibited C6 cell proliferation and migration more effectively than THC. Co-incubation of THC-di-Phe with the LAT1 inhibitor 2-Aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) further increased cellular death. THC-di-Phe also significantly inhibited the P70SK/S6 pathway, regulated by LAT1 inhibitors, more effectively than THC and displayed a similar binding mode with both JX-075 and BCH to the active site of LAT1. Findings suggest the potential role of THC-di-Phe as a LAT1 inhibitor and provide novel insight into its use as a potent antitumor agent in glioma with increased therapeutic efficacy.
Collapse
Affiliation(s)
- Polsak Teerawonganan
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (H.); (N.N.); (O.V.); (P.T.); (W.T.)
- Biomedicinal Chemistry Program, Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hasriadi
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (H.); (N.N.); (O.V.); (P.T.); (W.T.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peththa Wadu Dasuni Wasana
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle 80000, Sri Lanka;
| | - Pornpoom Angsuwattana
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand;
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (H.); (N.N.); (O.V.); (P.T.); (W.T.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (H.); (N.N.); (O.V.); (P.T.); (W.T.)
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pasarapa Towiwat
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (H.); (N.N.); (O.V.); (P.T.); (W.T.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worathat Thitikornpong
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (H.); (N.N.); (O.V.); (P.T.); (W.T.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (H.); (N.N.); (O.V.); (P.T.); (W.T.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
2
|
Raouf N, Darwish ZE, Ramadan O, Barakat HS, Elbanna SA, Essawy MM. The anticancer potential of tetrahydrocurcumin-phytosomes against oral carcinoma progression. BMC Oral Health 2024; 24:1126. [PMID: 39327561 PMCID: PMC11430579 DOI: 10.1186/s12903-024-04856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Herbal medicine combined with nanotechnology offers an alternative to the increasing burden of surgery and/or chemotherapy, the main therapeutics of oral carcinoma. Phytosomes are nano-vesicular systems formed by the interaction between phospholipids and phyto-active components via hydrogen bonding, exhibiting superior efficacy over pure phytocomponents in drug delivery. METHODS Tetrahydrocurcumin (THC)-phytosomes were prepared by thin film hydration method. After characterization, in vitro cytotoxicity, antiproliferative capacity, antioxidant potential and full apoptotic workup were paneled on oral squamous cell carcinoma (SCC4) in comparison with native THC-solution and cisplatin (3.58 µg/mL intravenous injection), as positive controls. In addition, we tested the three medications on normal oral keratinocytes and gingival fibroblasts to attest to their tissue-selectivity. RESULTS Successful preparation of THC-phytosomes using 1:1 molar ratio of THC to phospholipid exhibited significantly increased aqueous solubility, good colloidal properties, and complete drug release after one hour. On SCC4 cells, THC-phytosomes, at their dose-/time-dependency at ~ 60.06 µg/mL escalated cell percentages in the S-phase with 32.5 ± 6.22% increase, as well as a startling 29.69 ± 2.3% increase in apoptotic population. Depletion of the cell colonies survival to 0.29 ± 0.1% together with restraining the migratory rate by -6.4 ± 6.8% validated THC-phytosomes' antiproliferative capacity. Comparatively, the corresponding results of THC-solution and cisplatin revealed 12.9 ± 0.9% and 25.8 ± 1.1% for apoptosis and 0.9 ± 0.1% and 0.7 ± 0.08% for colony survival fraction, respectively. Furthermore, the nanoformulation exhibited the strongest immuno-positivity to caspase-3, which positively correlated with intense mitochondrial fluorescence by Mitotracker Red, suggesting its implication in the mitochondrial pathway of apoptosis, a finding further explained by the enormously high Bax and caspase-8 expression by RT-qPCR. Finally, the THC groups showed the lowest oxidative stress index, marking their highest free radical-scavenging potential among the test groups. CONCLUSIONS THC-phytosomes are depicted to be an efficient nanoformulation that enhanced the anticancer efficacy over the free drug counterpart and the conventional chemotherapeutic. Additionally, being selective to cancer cells and less cytotoxic to normal cells makes THC-phytosomes a potential candidate for tissue-targeted therapy.
Collapse
Affiliation(s)
- Nehal Raouf
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt.
| | - Zeinab Elsayed Darwish
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt
| | - Omneya Ramadan
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt
| | - Hebatallah S Barakat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Shimaa A Elbanna
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt.
- Center of Excellence for Research in Regenerative Medicine and its Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
3
|
Zhou M, Li R, Hua H, Dai Y, Yin Z, Li L, Zeng J, Yang M, Zhao J, Tan R. The role of tetrahydrocurcumin in disease prevention and treatment. Food Funct 2024; 15:6798-6824. [PMID: 38836693 DOI: 10.1039/d3fo05739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In recent decades, natural compounds derived from herbal medicine or dietary sources have played important roles in prevention and treatment of various diseases and have attracted more and more attention. Curcumin, extracted from the Curcumae Longae Rhizoma and widely used as food spice and coloring agent, has been proven to possess high pharmacological value. However, the pharmacological application of curcumin is limited due to its poor systemic bioavailability. As a major active metabolite of curcumin, tetrahydrocurcumin (THC) has higher bioavailability and stability than curcumin. Increasing evidence confirmed that THC had a wide range of biological activities and significant treatment effects on diseases. In this paper, we reviewed the research progress on the biological activities and therapeutic potential of THC on different diseases such as neurological disorders, metabolic syndromes, cancers, and inflammatory diseases. The extensive pharmacological effects of THC involve the modulation of various signaling transduction pathways including MAPK, JAK/STAT, NF-κB, Nrf2, PI3K/Akt/mTOR, AMPK, Wnt/β-catenin. In addition, the pharmacokinetics, drug combination and toxicology of THC were discussed, thus providing scientific basis for the safe application of THC and the development of its dietary supplements and drugs.
Collapse
Affiliation(s)
- Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hua Hua
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Mengni Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
- National Key Laboratory of Drug Regulatory Science, National Medical Products Administration (NMPA), Beijing 100038, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
4
|
Ahmed IA, Hafiz S, van Ginkel S, Pondugula SR, Abdelhaffez AS, Sayyed HG, El-Aziz EAA, Mansour MM. Augmentation of Docetaxel-Induced Cytotoxicity in Human PC-3 Androgen-Independent Prostate Cancer Cells by Combination With Four Natural Apoptosis-Inducing Anticancer Compounds. Nat Prod Commun 2023; 18:10.1177/1934578x231175323. [PMID: 37292146 PMCID: PMC10249917 DOI: 10.1177/1934578x231175323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Docetaxel (DTX) is the treatment of choice for metastatic castration-resistant prostate cancer. However, developing drug resistance is a significant challenge for achieving effective therapy. This study evaluated the anticancer and synergistic effects on DTX of four natural compounds (calebin A, 3'-hydroxypterostilbene, hispolon, and tetrahydrocurcumin) using PC-3 androgen-resistant human prostate cancer cells. We utilized the CellTiter-Glo® luminescent cell viability assay and human PC-3 androgen-independent prostate cancer cells to determine the antiproliferative effects of the four compounds alone and combined with DTX. Cytotoxicity to normal human prostate epithelial cells was tested in parallel using normal immortalized human prostate epithelial cells (RWPE-1). We used cell imaging and quantitative caspase-3 activity to determine whether these compounds induce apoptosis. We also measured the capacity of each drug to inhibit TNF-α-induced NF-kB using a colorimetric assay. Our results showed that all four natural compounds significantly augmented the toxicity of DTX to androgen-resistant PC-3 prostate cancer cells at IC50. Interestingly, when used alone, each of the four compounds had a higher cytotoxic activity to PC-3 than DTX. Mechanistically, these compounds induced apoptosis, which we confirmed by cell imaging and caspase-3 colorimetric assays. Further, when used either alone or combined with DTX, the four test compounds inhibited TNF-α-induced NF-kB production. More significantly, the cytotoxic effects on normal immortalized human prostate epithelial cells were minimal and non-significant, suggesting prostate cancer-specific effects. In conclusion, the combination of DTX with the four test compounds could effectively enhance the anti-prostate cancer activity of DTX. This combination has the added value of reducing the DTX effective concentration. We surmise that calebin A, 3'-hydroxypterostilbene, hispolon, and tetrahydrocurcumin were all excellent drug candidates that produced significant antiproliferative activity when used alone and synergistically enhanced the anticancer effect of DTX. Further in vivo studies using animal models of prostate cancer are needed to confirm our in vitro findings.
Collapse
Affiliation(s)
- Inass A Ahmed
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Saly Hafiz
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Sabrina van Ginkel
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | | - Hayam G Sayyed
- Department of Physiology, Faculty of Medicine, Assiut University, Egypt
| | | | - Mahmoud M Mansour
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
5
|
Yao A, Storr SJ, Inman M, Barwell L, Moody CJ, Martin SG. Cytotoxic and Radiosensitising Effects of a Novel Thioredoxin Reductase Inhibitor in Brain Cancers. Mol Neurobiol 2022; 59:3546-3563. [PMID: 35344158 PMCID: PMC9148287 DOI: 10.1007/s12035-022-02808-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 11/04/2022]
Abstract
The thioredoxin (Trx) system, a key antioxidant pathway, represents an attractive target for cancer therapy. This study investigated the chemotherapeutic and radiosensitising effects of a novel Trx reductase (TrxR) inhibitor, IQ10, on brain cancer cells and the underlying mechanisms of action. Five brain cancer cell lines and a normal cell type were used. TrxR activity and expression were assessed by insulin reduction assay and Western blotting, respectively. IQ10 cytotoxicity was evaluated using growth curve, resazurin reduction and clonogenic assays. Radiosensitivity was examined using clonogenic assay. Reactive oxygen species levels were examined by flow cytometry and DNA damage assessed by immunofluorescence. Epithelial-mesenchymal transition (EMT)-related gene expression was examined by RT-PCR array. IQ10 significantly inhibited TrxR activity but did not affect Trx system protein expression in brain cancer cells. The drug exhibited potent anti-proliferative and cytotoxic effects against brain cancer cells under both normoxic and hypoxic conditions in both 2D and 3D systems, with IC50s in the low micromolar range. It was up to ~ 1000-fold more potent than temozolomide. IQ10 substantially sensitised various brain cancer cells to radiation, with such effect being due, in part, to functional inhibition of TrxR, making cells less able to deal with oxidative stress and leading to increased oxidative DNA damage. IQ10 significantly downregulated EMT-associated gene expression suggesting potential anti-invasive and antimetastatic properties. This study suggests that IQ10 is a potent anticancer agent and could be used as either a single agent or combined with radiation, to treat brain cancers.
Collapse
Affiliation(s)
- Anqi Yao
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Sarah J Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Martyn Inman
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Lucy Barwell
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Christopher J Moody
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stewart G Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
6
|
Du C, Tian Y, Duan W, Chen X, Ren W, Deng Q. Curcumin Enhances the Radiosensitivity of Human Urethral Scar Fibroblasts by Apoptosis, Cell Cycle Arrest and Downregulation of Smad4 via Autophagy. Radiat Res 2021; 195:452-462. [PMID: 33755170 DOI: 10.1667/rade-20-00239.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/15/2021] [Indexed: 11/03/2022]
Abstract
The goals of this study were to determine whether curcumin can radiosensitize human urethral scar fibroblasts (HUSFs) and inhibit the synthesis of collagen, and to explore the molecular mechanism. Here, HUSFs were established and cultured in vitro and cell counting kit-8 (CCK-8) experiment and plate clone formation assay were performed to determine the appropriate concentration of curcumin and radiation dose. The radiosensitization of curcumin was confirmed by plate clone formation assay. Cell cycle distribution was determined by flow cytometry and apoptosis rate by TdT-mediated dUTP nick-end labeling (TUNEL). Western blot was used to detect the levels of collagen I, collagen III, Smad2, Smad3, Smad4, transforming growth factor-β (TGF-β1), Beclin1 and microtubule-associated protein light chain 3 (LC3), as a means of determining the mechanism. Our findings showed that curcumin enhanced radiosensitivity of HUSFs in vitro (sensitization enhancement ratio = 2.030). Furthermore, curcumin and radiation treatments promoted the apoptosis of HUSFs and blocked the cells in G2/M phase. In addition, curcumin combined with radiation inhibited the synthesis of collagen I and collagen III through Smad4 pathway, with possible involvement of autophagy. These results suggest that curcumin could be a radiosensitizer of HUSFs, inhibit the proliferation of HUSFs and suppress fibrosis by downregulation of Smad4 via autophagy.
Collapse
Affiliation(s)
- Chun Du
- Department of a Urology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | | | - Wanli Duan
- Department of a Urology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xin Chen
- Department of Radiotherapy, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Wei Ren
- Department of a Urology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Qian Deng
- Department of a Urology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
7
|
Yi J, Zhu J, Zhao C, Kang Q, Zhang X, Suo K, Cao N, Hao L, Lu J. Potential of natural products as radioprotectors and radiosensitizers: opportunities and challenges. Food Funct 2021; 12:5204-5218. [PMID: 34018510 DOI: 10.1039/d1fo00525a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natural products can be used as natural radiosensitizers and radioprotectors, showing promising effects in cancer treatments in combination with radiotherapy, while reducing ionizing radiation (IR) damage to normal cells/tissues. The different effects of natural products on irradiated normal and tumor cells/tissues have attracted more and more researchers' interest. Nonetheless, the clinical applications of natural products in radiotherapy are few, which may be related to their low bioavailability in the human body. Here, we displayed the radiation protection and radiation sensitization of major natural products, highlighted the related molecular mechanisms of these bioactive substances combined with radiotherapy to treat cancer, and critically reviewed their deficiency and improved measures. Lastly, several clinical trials were presented to verify the clinical application of natural products as radiosensitizers and radioprotectors. Further clinical evaluation is still needed. This review provides a reference for the utilization of natural products as radiosensitizers and radioprotectors.
Collapse
Affiliation(s)
- Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Changcheng Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaomiao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Keke Suo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Nana Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, 100010, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Pandey A, Chaturvedi M, Mishra S, Kumar P, Somvanshi P, Chaturvedi R. Reductive metabolites of curcumin and their therapeutic effects. Heliyon 2020; 6:e05469. [PMID: 33241148 PMCID: PMC7674297 DOI: 10.1016/j.heliyon.2020.e05469] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/09/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Curcumin, a secondary metabolite from the turmeric plant is one of the most promising natural products, which has been studied extensively for decades. It has demonstrated several pharmacological activities in vitro and in vivo. Various studies have indicated that the pharmacological activity of curcumin is contributed by its metabolites. The aim of this review is to present an overview of metabolic products of curcumin produced upon its reduction like di, tetra, hexa and octa-hydrocurcumin. In addition, this paper has systematically analyzed the current information regarding medicinal use of reduced metabolites of curcumin and identified the limitations which have hindered its widespread usage in the medical world. Several diverse therapeutic effects have shown to be exhibited by reduced metabolites of curcumin such as antioxidant, anti-cancerous, anti-inflammatory and immunoregulatory activities. The potential underlying molecular mechanisms of the biological activities of reduced metabolites of curcumin have also been highlighted, which may provide insight into the principle of effectiveness of curcumin.
Collapse
Affiliation(s)
- Achyut Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Maya Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Biotechnology, TERI School of Advance Studies, New Delhi, 110070, India
| | - Shruti Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Pramod Kumar
- Department of Chemistry, Sri Aurobindo College, University of Delhi, New Delhi, India
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advance Studies, New Delhi, 110070, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Ryskalin L, Biagioni F, Busceti CL, Lazzeri G, Frati A, Fornai F. The Multi-Faceted Effect of Curcumin in Glioblastoma from Rescuing Cell Clearance to Autophagy-Independent Effects. Molecules 2020; 25:E4839. [PMID: 33092261 PMCID: PMC7587955 DOI: 10.3390/molecules25204839] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
The present review focuses on the multi-faceted effects of curcumin on the neurobiology glioblastoma multiforme (GBM), with a special emphasis on autophagy (ATG)-dependent molecular pathways activated by such a natural polyphenol. This is consistent with the effects of curcumin in a variety of experimental models of neurodegeneration, where the molecular events partially overlap with GBM. In fact, curcumin broadly affects various signaling pathways, which are similarly affected in cell degeneration and cell differentiation. The antitumoral effects of curcumin include growth inhibition, cell cycle arrest, anti-migration and anti-invasion, as well as chemo- and radio-sensitizing activity. Remarkably, most of these effects rely on mammalian target of rapamycin (mTOR)-dependent ATG induction. In addition, curcumin targets undifferentiated and highly tumorigenic GBM cancer stem cells (GSCs). When rescuing ATG with curcumin, the tumorigenic feature of GSCs is suppressed, thus counteracting GBM establishment and growth. It is noteworthy that targeting GSCs may also help overcome therapeutic resistance and reduce tumor relapse, which may lead to a significant improvement of GBM prognosis. The present review focuses on the multi-faceted effects of curcumin on GBM neurobiology, which represents an extension to its neuroprotective efficacy.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.L.)
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| | - Carla L. Busceti
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.L.)
| | - Alessandro Frati
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.L.)
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| |
Collapse
|
10
|
Lai CS, Ho CT, Pan MH. The Cancer Chemopreventive and Therapeutic Potential of Tetrahydrocurcumin. Biomolecules 2020; 10:E831. [PMID: 32486019 PMCID: PMC7356876 DOI: 10.3390/biom10060831] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
In recent decades, cancer has been one of the leading causes of death worldwide. Despite advances in understanding the molecular basis of tumorigenesis, diagnosis, and clinical therapies, the discovery and development of effective drugs is an active and vital field in cancer research. Tetrahydrocurcumin is a major curcuminoid metabolite of curcumin, naturally occurring in turmeric. The interest in tetrahydrocurcumin research is increasing because it is superior to curcumin in its solubility in water, chemical stability, bioavailability, and anti-oxidative activity. Many in vitro and in vivo studies have revealed that tetrahydrocurcumin exerts anti-cancer effects through various mechanisms, including modulation of oxidative stress, xenobiotic detoxification, inflammation, proliferation, metastasis, programmed cell death, and immunity. Despite the pharmacological similarities between tetrahydrocurcumin and curcumin, the structure of tetrahydrocurcumin determines its distinct and specific molecular mechanism, thus making it a potential candidate for the prevention and treatment of cancers. However, the utility of tetrahydrocurcumin is yet to be evaluated as only limited pharmacokinetic and oral bioavailability studies have been performed. This review summarizes research on the anti-cancer properties of tetrahydrocurcumin and describes its mechanisms of action.
Collapse
Affiliation(s)
- Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
11
|
Liu Y, Zhang T, Li G, Li S, Li J, Zhao Q, Wu Q, Xu D, Hu X, Zhang L, Li Q, Zhang H, Liu B. Radiosensitivity enhancement by Co-NMS-mediated mitochondrial impairment in glioblastoma. J Cell Physiol 2020; 235:9623-9634. [PMID: 32394470 DOI: 10.1002/jcp.29774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
We investigated the radiosensitizing effects of Co-NMS, a derivative of nimesulide based on a cobalt carbonyl complex, on malignant glioma cells. In the zebrafish exposed to Co-NMS ranging from 5 to 20 μM, cell death and heat shock protein 70 expression in the brain and neurobehavioral performance were evaluated. Our data showed that Co-NMS at 5 μM did not cause the appreciable neurotoxicity, and thereby was given as a novel radiation sensitizer in further study. In the U251 cells, Co-NMS combined with irradiation treatment resulted in significant inhibition of cell growth and clonogenic capability as well as remarkable increases of G2/M arrest and apoptotic cell population compared to the irradiation alone treatment. This demonstrated that the Co-NMS administration exerted a strong potential of sensitizing effect on the irradiated cells. With regard to the tumor radiosensitization of Co-NMS, it could be primarily attributed to the Co-NMS-derived mitochondrial impairment, reflected by the loss of mitochondrial membrane potential, the disruption of mitochondrial fusion and fission balance as well as redox homeostasis. Furthermore, the energy metabolism of the U251 cells was obviously suppressed by cotreatment with Co-NMS and irradiation through repressing mitochondrial function. Taken together, our findings suggested that Co-NMS could be a desirable drug to enhance the radiotherapeutic effects in glioblastoma patients.
Collapse
Affiliation(s)
- Yang Liu
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Taofeng Zhang
- Institute of Radiochemistry, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Guo Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Sirui Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jili Li
- Institute of Medicinal Chemistry, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Quanyi Zhao
- Institute of Medicinal Chemistry, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qingfen Wu
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Xu
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Hu
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Luwei Zhang
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Li
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Dai LB, Yu Q, Zhou SH, Bao YY, Zhong JT, Shen LF, Lu ZJ, Fan J, Huang YP. Effect of combination of curcumin and GLUT-1 AS-ODN on radiosensitivity of laryngeal carcinoma through regulating autophagy. Head Neck 2020; 42:2287-2297. [PMID: 32314842 DOI: 10.1002/hed.26180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 02/26/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study is to explore the role of curcumin and GLUT-1 antisense oligodeoxynucleotides (AS-ODN) on autophagy modulation-initiated radiosensitivity. METHODS BALB/c mice were employed to establish xenograft model using Tu212 cell. The expression of autophagy- and apoptosis-related proteins was determined by WB. Autophagosome was observed under transmission electron microscope. Apoptosis of tumor tissue were detected by TUNEL staining. RESULTS Combinations of curcumin and GLUT-1 AS-ODN with 10 Gy inhibited the tumor growth by inducing apoptosis of laryngeal cancer cells followed with the enhancement of autophagy. 3-MA also had a promotion effect on irradiation-mediated growth inhibition possibly by depressing PI3K and on curcumin/GLUT-1 AS-ODN-mediated growth inhibition potentially by regulating autophagic events. Of note, a de-escalation of radiotherapy dose (5 Gy) along with curcumin, GLUT-1 AS-ODN or 3-MA produced a stronger effect than high dosage of radiotherapy (10 Gy) alone. CONCLUSIONS Curcumin and GLUT-1 AS-ODN improve the radiosensitivity of laryngeal carcinoma through regulating autophagy and inducing apoptosis.
Collapse
Affiliation(s)
- Li-Bo Dai
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Yu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang-Yang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiang-Tao Zhong
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li-Fang Shen
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhong-Jie Lu
- Department of Radiotherapy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ya-Ping Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Shabaninejad Z, Pourhanifeh MH, Movahedpour A, Mottaghi R, Nickdasti A, Mortezapour E, Shafiee A, Hajighadimi S, Moradizarmehri S, Sadeghian M, Mousavi SM, Mirzaei H. Therapeutic potentials of curcumin in the treatment of glioblstoma. Eur J Med Chem 2020; 188:112040. [PMID: 31927312 DOI: 10.1016/j.ejmech.2020.112040] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/04/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM), a greatly aggressive malignancy of the brain, is correlated with a poor prognosis and low rate of survival. Up to now, chemotherapy and radiation therapy after surgical approaches have been the treatments increasing the survival rates. The low efficacy of mentioned therapies as well as their side-effects has forced researchers to explore an appropriate alternative or complementary treatment for glioblastoma. In experimental models, it has been shown that curcumin has therapeutic potentials to fight against GBM. Given that curcumin has pharmacological effects against cancer stem cells, as major causes of resistance to therapy in glioblastoma cells. Moreover, it has been showed that curcumin exerts its therapeutic effects on GBM cells via affecting on apoptosis, oxidant system, and inflammatory pathways. Curcumin would possess a synergistic impact with chemotherapeutic agents. Herein, we summarized the current findings on curcumin as therapeutic agent in the treatment of GBM.
Collapse
Affiliation(s)
- Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Mottaghi
- Department of Oral and Maxillofacial Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Nickdasti
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Erfan Mortezapour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Mohammad Sadeghian
- Orthopedic Surgeon Fellowship of Spine Surgery, Sasan General Hospital, Tehran, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran.
| |
Collapse
|
14
|
Zhang X, Zhao L, Zhai G, Ji J, Liu A. Multifunctional Polyethylene Glycol (PEG)-Poly (Lactic-Co-Glycolic Acid) (PLGA)-Based Nanoparticles Loading Doxorubicin and Tetrahydrocurcumin for Combined Chemoradiotherapy of Glioma. Med Sci Monit 2019; 25:9737-9751. [PMID: 31856143 PMCID: PMC6934137 DOI: 10.12659/msm.918899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background This study aimed to prepare doxorubicin- and tetrahydrocurcumin-loaded and transferrin-modified PEG-PLGA nanoparticles (Tf-NPs-DOX-THC) for enhanced and synergistic chemoradiotherapy. Material/Methods Tf-NPs-DOX-THC were prepared via the double-emulsion method. The morphologies and particle sizes of the prepared nanoparticles were examined by TEM and DLS, respectively. The in vitro MTT, apoptosis, and clone formation assays were performed to detect the proliferation and radiosensitivity of cells with various treatments. Cellular uptake assay was also conducted. The tissue distribution of Tf-NPs was investigated by ex vivo DOX fluorescence imaging. The in vivo tumor growth inhibition efficiency of various treatments was evaluated in orthotopic C6 mouse models and C6 subcutaneously grafted mouse models. Results Tf-NPs-DOX-THC exhibited high drug-loading efficiency (6.56±0.32%) and desirable particle size (under 250 nm). MTT, apoptosis, and clone formation assays revealed the enhanced anti-cancer activity and favorable radiosensitizing effect of Tf-NPs-DOX-THC. Strong fluorescence was observed in the brains of mice treated with Tf-NPs-DOX. The in vitro release of drug from nanoparticles was in a pH-sensitive manner. Tf-NPs-DOX-THC in combination with radiation also achieved favorable anti-tumor efficacy in vivo. Conclusions All results suggest that a combination of Tf-NPs-DOX-THC and radiation is a promising strategy for synergistic and sensitizing chemoradiotherapy of glioma.
Collapse
Affiliation(s)
- Xingzhen Zhang
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong, China (mainland)
| | - Lixia Zhao
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong, China (mainland)
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong, China (mainland)
| | - Jianbo Ji
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong, China (mainland)
| | - Anchang Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|