1
|
Salm DC, Horewicz VV, Tanaka F, Ferreira JK, de Oliveira BH, Maio JMB, Donatello NN, Ludtke DD, Mazzardo-Martins L, Dutra AR, Mack JM, de C H Kunzler D, Cargnin-Ferreira E, Salgado ASI, Bittencourt EB, Bianco G, Piovezan AP, Bobinski F, Moré AOO, Martins DF. Electrical Stimulation of the Auricular Branch Vagus Nerve Using Random and Alternating Frequencies Triggers a Rapid Onset and Pronounced Antihyperalgesia via Peripheral Annexin A1-Formyl Peptide Receptor 2/ALX Pathway in a Mouse Model of Persistent Inflammatory Pain. Mol Neurobiol 2023; 60:2889-2909. [PMID: 36745336 DOI: 10.1007/s12035-023-03237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
This study evaluated the antihyperalgesic and anti-inflammatory effects of percutaneous vagus nerve electrical stimulation (pVNS) by comparing the effects of alternating and random frequencies in an animal model of persistent inflammatory hyperalgesia. The model was induced by Freund's complete adjuvant (CFA) intraplantar (i.pl.) injection. Mice were treated with different protocols of time (10, 20, or 30 min), ear laterality (right, left or both), and frequency (alternating or random). Mechanical hyperalgesia was evaluated, and some groups received i.pl. WRW4 (FPR2/ALX antagonist) to determine the involvement. Edema, paw surface temperature, and spontaneous locomotor activity were evaluated. Interleukin-1β, IL-6, IL-10, and IL4 levels were verified by enzyme-linked immunosorbent assay. AnxA1, FPR2/ALX, neutrophil, M1 and M2 phenotype macrophage, and apoptotic cells markers were identified using western blotting. The antihyperalgesic effect pVNS with alternating and random frequency effect is depending on the type of frequency, time, and ear treated. The pVNS random frequency in the left ear for 10 min had a longer lasting antihyperalgesic effect, superior to classical stimulation using alternating frequency and the FPR2/ALX receptor was involved in this effect. There was a reduction in the levels of pro-inflammatory cytokines and an increase in the immunocontent of AnxA1 and CD86 in mice paw. pVNS with a random frequency in the left ear for 10 min showed to be optimal for inducing an antihyperalgesic effect. Thus, the random frequency was more effective than the alternating frequency. Therefore, pVNS may be an important adjunctive treatment for persistent inflammatory pain.
Collapse
Affiliation(s)
- Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Verônica V Horewicz
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Fernanda Tanaka
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Júlia K Ferreira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna H de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Julia Maria Batista Maio
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Nathalia N Donatello
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Leidiane Mazzardo-Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aline R Dutra
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Josiel M Mack
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Deborah de C H Kunzler
- Department of Physiotherapy, State University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | | | - Gianluca Bianco
- Research Laboratory of Posturology and Neuromodulation RELPON, Department of Human Neuroscience, Sapienza University, Rome, Italy
- Istituto Di Formazione in Agopuntura E Neuromodulazione IFAN, Rome, Italy
| | - Anna Paula Piovezan
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Ari O O Moré
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Integrative Medicine and Acupuncture Division, University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Abdeyazdan S, Mohajeri M, Saberi S, Mirzaei M, Ayatollahi SA, Saghaei L, Ghanadian M. Sb(V) Kaempferol and Quercetin Derivative Complexes: Synthesis, Characterization and Antileishmanial Activities. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e128379. [PMID: 36942069 PMCID: PMC10024330 DOI: 10.5812/ijpr-128379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Background Recent studies on Leishmaniasis treatment have confirmed the antiparasitic effects of flavonols and organic antimony pentavalent [(Sb(V)] complexes. Objectives This study aimed to identify new Sb(V) complexes by combining the benefits of antimonials and flavonols as well as by optimizing their properties. Methods Kaempferol and quercetin peracetate were prepared using acetic anhydride in pyridine. By performing regioselective synthesis, 7-O-paramethylbenzyl as an electron-donating group and 7-O-paranitrobenzyl as an electron-withdrawing group were added to quercetin, and, then, the synthesis of Sb(V) kaempferol and quercetin derivative complexes were performed using SbCl5 solution in glacial acetic acid. The structures were confirmed by UV, ESI mass, IR, 1H-, and 13C-NMR spectral data, and the Stoichiometry of the ligand-metal complex by the mole ratio method. Computational molecular modeling was conducted using the Gaussian program. Results The structures were confirmed based on the results from UV, nuclear magnetic resonance (NMR), and electrospray ionization (ESI) mass analyses (3-12). Among the produced compounds, 11 and 12 as newly described, and other compounds as pre-defined compounds were identified. According to the results from biological test, kaempferol triacetate with more lipophilicity showed the highest anti-promastigote activity with an IC50 value of 14.93 ± 2.21 µM. As for anti-amastigote activity, despite the differences, all antimony complexes showed anti-amastigote effects in vitro with IC50 values of 0.52 to 14.50 µM. Conclusions All flavonol Sb(V) complexes showed higher activity compared to meglumine antimonate in anti-amastigote effect. Inside the host macrophages, by breaking down the complex into antimony and quercetin or kaempferol analogs, the observed antiparasitic effects may have been related to both Sb(V)/Sb(III) conversion and flavonoid antileishmanial activities.
Collapse
Affiliation(s)
- Sara Abdeyazdan
- Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mohajeri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sedigheh Saberi
- Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Mirzaei
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Effect of Artesunate on Leishmania Amazonesis Induced Neuroinflammation and Nociceptive Behavior in Male Balb/C Mice. Animals (Basel) 2020; 10:ani10040557. [PMID: 32230725 PMCID: PMC7222374 DOI: 10.3390/ani10040557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Leishmaniasis is a multisystemic zoonotic disease with several symptoms, and treating this disease is a great challenge for veterinary medicine. Artemisinin derivatives are currently the most widely used drugs for the treatment of malaria, especially for their excellent safety profile and low cost. Artesunate is a more stable derivative of its precursor, artemisin, and has been shown to be a pluripotent agent with different pharmacological actions. In this study, we evaluated the role of neuroinflammation in leishmaniasis and its correlation with pain and sickness behavior, and the anti-inflammatory and neuroprotective effects of artesunate in a murine model of Leishmania amazonensis infection in BALB/c mice. The results from this study indicate that artesunate is a good candidate for treatment and/or as an adjuvant in anti- leishmaniasis therapy, and for preventing and alleviating leishmaniasis-induced pain and neuroinflammation. Abstract Background: Leishmaniasis is a multisystemic zoonotic disease with several symptoms, including neurological disorders. Leishmaniasis is accompanied by an increase in nociceptive behaviors, linked to the presence of a chronic inflammatory state, in both peripheral tissue and the central nervous system. Artesunate is a more stable derivative of its precursor artemisin and has been shown to be a pluripotent agent with different pharmacological actions. Methods: In this study, we investigated the effects of artesunate in Leishmaniaamazonensi- infected BALB/c mice, evaluating its effectiveness in reducing inflammation, neuroinflammation, and nociceptive and sickness behaviors. Results: Our results demonstrate a significant increase in pain sensitivity and sickness behaviors after L. amazonensis infection. Moreover, the infection induced a significant increase in inflammatory response at both the paw and spinal cord level. Treatment with artesunate was able to induce a significant decrease in tissue inflammation and neuroinflammation and thus induce a significant decrease in pain sensitivity and sickness behaviors. Conclusions: The results from this study indicate that artesunate is a good candidate for treatment and/or as an adjuvant in leishmanicidal therapy, and to prevent and alleviate leishmaniasis-induced pain and neuroinflammation and thereby improve the quality of life of leishmaniasis patients.
Collapse
|