1
|
Campanholi KDSS, da Silva Junior RC, Gonçalves RS, de Oliveira MC, Pozza MSDS, Leite AT, da Silva LH, Malacarne LC, Bruschi ML, Castilha LD, dos Santos TC, Caetano W. Photo-Phytotherapeutic Gel Composed of Copaifera reticulata, Chlorophylls, and k-Carrageenan: A New Perspective for Topical Healing. Pharmaceutics 2022; 14:pharmaceutics14122580. [PMID: 36559074 PMCID: PMC9785472 DOI: 10.3390/pharmaceutics14122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic wound healing represents an impactful financial burden on healthcare systems. In this context, the use of natural products as an alternative therapy reduces costs and maintains effectiveness. Phytotherapeutic gels applied in photodynamic therapy (PDT) have been developed to act as topical healing medicines and antibiotics. The bioactive system is composed of Spirulina sp. (source of chlorophylls) and Copaifera reticulata oil microdroplets, both incorporated into a polymeric blend constituted by kappa-carrageenan (k-car) and F127 copolymer, constituting a system in which all components are bioactive agents. The flow behavior and viscoelasticity of the formulations were investigated. The photodynamic activity was accessed from studies of the inactivation of Staphylococcus aureus bacteria, the main pathogen of hospital relevance. Furthermore, in vivo studies were conducted using eighteen rabbits with dermatitis (grade III and IV) in both paws. The gels showed significant antibiotic potential in vitro, eliminating up to 100% of S. aureus colonies in the presence or absence of light. The k-car reduced 41% of the viable cells; however, its benefits were enhanced by adding chlorophyll and copaiba oil. The animals treated with the phytotherapeutic medicine showed a reduction in lesion size, with healing and re-epithelialization verified in the histological analyses. The animals submitted to PDT displayed noticeable improvement, indicating this therapy's viability for ulcerative and infected wounds. This behavior was not observed in the iodine control treatment, which worsened the animals' condition. Therefore, gel formulations were a viable alternative for future pharmaceutical applications, aiming at topical healing.
Collapse
Affiliation(s)
- Katieli da Silva Souza Campanholi
- Chemistry Department, State University of Maringá, Maringá 87020-900, PR, Brazil
- Correspondence: (K.d.S.S.C.); (W.C.); Tel.: +55-44-3011-5153 (K.d.S.S.C. & W.C.)
| | | | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Mariana Carla de Oliveira
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | - Angela Tiago Leite
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | | | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | | | - Wilker Caetano
- Chemistry Department, State University of Maringá, Maringá 87020-900, PR, Brazil
- Correspondence: (K.d.S.S.C.); (W.C.); Tel.: +55-44-3011-5153 (K.d.S.S.C. & W.C.)
| |
Collapse
|
2
|
Kakadia PG, Conway BR. Design and development of essential oil based nanoemulsion for topical application of triclosan for effective skin antisepsis. Pharm Dev Technol 2022; 27:554-564. [PMID: 35666086 DOI: 10.1080/10837450.2022.2087085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The skin acts as physical barrier to protect the body from external physical and chemical environment. When skin is infected, the outer epidermal barrier is compromised and colonized with microbial growth. Wound infection presents an immense burden in healthcare costs and decreased quality of life for patients. Topical application of nanoemulsions (NE) at pathological sites offers the potential advantage of direct drug delivery to the skin including potential for follicular targeting. This may have application in the improvement of skin antisepsis. In this study, NEs of triclosan (TSN) were prepared using hot high shear homogenization followed by ultrasonication. The oil phases comprised eucalyptus oil (EO) and olive oil (OO) and pseudo-ternary phase diagrams used to select optimum concentrations of surfactant. EO-based NEs had smaller droplet size and higher entrapment efficiency compared to OO-based NEs. Skin permeation was higher for EO-containing formulations, likely due to higher solubility of TSN in EO, smaller droplet size, low viscosity, and permeation enhancement effects of EO. Significantly, TSN was retained within the skin, demonstrating the potential of NEs for targeting hair follicular delivery within the skin, which may help improve the success of topical antisepsis.
Collapse
Affiliation(s)
- Pratibha G Kakadia
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Barbara R Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK.,Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
3
|
Singha LR, Das MK. Effect of Mesua ferrea Linn. seed kernel oil on percutaneous absorption of Diltiazem hydrochloride through pig ear epidermis: A mechanistic study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Santos TMM, Chaves BB, Cerqueira JS, Canario MM, Bresolin D, Pinto JC, Machado RAF, Cabral-Albuquerque ECM, Vieira de Melo SAB. Dispersion Polymerization of Methyl Methacrylate in Supercritical CO 2: A Preliminary Evaluation of In Situ Incorporation of Copaiba Oil. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- T. M. M. Santos
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, 40210-630 Salvador, BA, Brazil
| | - B. B. Chaves
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, 40210-630 Salvador, BA, Brazil
| | - J. S. Cerqueira
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, 40210-630 Salvador, BA, Brazil
| | - M. M. Canario
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, 40210-630 Salvador, BA, Brazil
| | - D. Bresolin
- Programa de Pós-graduação em Engenharia Química, Universidade Federal de Santa Catarina, 88040-900 Santa Catarina, SC, Brazil
| | - J. C. Pinto
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ, Brazil
| | - R. A. F. Machado
- Programa de Pós-graduação em Engenharia Química, Universidade Federal de Santa Catarina, 88040-900 Santa Catarina, SC, Brazil
| | - E. C. M Cabral-Albuquerque
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, 40210-630 Salvador, BA, Brazil
| | - S. A. B. Vieira de Melo
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, 40210-630 Salvador, BA, Brazil
- Centro Interdisciplinar em Energia e Ambiente, Campus Universitário da Federação/Ondina, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| |
Collapse
|
5
|
Antioxidant Action and In Vivo Anti-Inflammatory and Antinociceptive Activities of Myrciaria floribunda Fruit Peels: Possible Involvement of Opioidergic System. Adv Pharmacol Pharm Sci 2020; 2020:1258707. [PMID: 32399519 PMCID: PMC7201827 DOI: 10.1155/2020/1258707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/21/2020] [Accepted: 03/13/2020] [Indexed: 11/26/2022] Open
Abstract
This work evaluated the antioxidant properties and in vivo antinociceptive and anti-inflammatory effects of extracts obtained from fruit peels of Myrciaria floribunda (H. West ex Willd.) O. Berg (Myrtaceae). This plant is popularly known in Brazil as Cambuí or camboim. Different extracts were submitted to comparative analysis to determine the content of selected phytochemical classes (levels of total phenols, flavonoids, and monomeric anthocyanins) and the in vitro antioxidant potentials. The extract with higher potential was selected for in vivo evaluation of its antinociceptive and anti-inflammatory action. Finally, the chemical characterization of this extract was performed by high-performance liquid chromatography (HPLC). MfAE (extract obtained using acetone as solvent) showed the higher levels of phenols (296 mg GAE/g) and anthocyanins contents (35.65 mg Cy-3-glcE/g) that were associated with higher antioxidant activity. MfAE also exhibited in vivo anti-inflammatory and analgesic propertiers. This fraction inhibited the inflammatory and neurogenic phases of pain, and this effect was reversed by naloxone (suggesting the involvement of opioidergic system). MfAE reduced the abdominal contortions induced by acetic acid. The HPLC analysis revealed the presence of gallic acid (and its derivatives) and ellagic acid. Taken together, these data support the use of M. floribunda fruit peels for development of functional foods and nutraceutics.
Collapse
|