1
|
Ethnomedical uses, chemical constituents, and evidence-based pharmacological properties of Chenopodium ambrosioides L.: extensive overview. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00306-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The Chenopodium genus is a plant family widely spread worldwide that includes various plant species reputed to possess several medicinal virtues in folk medicines. Chenopodium ambrosioides L. is among the most used plants in traditional medicines worldwide. This review aimed to highlight ethnomedicinal uses, phytochemical status, and pharmacological properties of C. ambrosioides L.
Main body of the abstract
The analysis of relevant data highlights various ethnomedicinal uses against human and veterinary diseases in forty countries. Most indications consisted of gastrointestinal tract dysfunctioning troubles and worms parasitemia. Around 330 chemical compounds have been identified in different plant parts, especially in its essential oil fractions (59.84%). However, only a few compounds—mainly monoterpenes and glycosides—have been isolated and characterized. Experimental pharmacological studies validated a large scale of significant health benefits. It appeared that many monoterpenes are antioxidant, insecticidal, trypanocidal, analgesic, antifungal, anti-inflammatory, anti-arthritic, acaricidal, amoebicidal, anthelmintic, anticancer, antibacterial, antidiabetic, antidiarrheal, antifertility, antifungal, anti-leishmanial, antimalarial, antipyretic, antisickling, antischistosomal, antiulcer, anxiolytic, immunomodulatory, molluscicidal, and vasorelaxant agents.
Short conclusion
Thus, the Chenopodium ambrosioides species necessitates further chemical studies to isolate and characterize new bioactive secondary metabolites and pharmacological investigations to precise the mechanisms of action before clinical trials.
Collapse
|
2
|
Méndez-Flores OG, Ochoa-Díaz López H, Castro-Quezada I, Olivo-Vidal ZE, García-Miranda R, Rodríguez-Robles U, Irecta-Nájera CA, López-Ramírez G, Sánchez-Chino XM. The Milpa as A Supplier of Bioactive Compounds: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- OG Méndez-Flores
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - H Ochoa-Díaz López
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - I Castro-Quezada
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - ZE Olivo-Vidal
- Health Department, El Colegio De La Frontera Sur, Villahermosa, Tabasco, México
| | - R García-Miranda
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
- Escuela De Lenguas-Campus III San Cristóbal, Universidad Autónoma De Chiapas, San Cristóbal De Las Casas, Chiapas, México
| | - U Rodríguez-Robles
- Departamento De Ecología Y Recursos Naturales. Centro Universitario De La Costa Sur. Universidad De Guadalajara, Autlán De Navarro, Jalisco, México
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, Unidad Villahermosa, Villahermosa, Tabasco, México
| | - CA Irecta-Nájera
- Health Department, El Colegio De La Frontera Sur, Villahermosa, Tabasco, México
| | - G López-Ramírez
- Departamento De Fisiología, Biofísica Y Neurociencias, Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad De México, México
| | - XM Sánchez-Chino
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, Unidad Villahermosa, Villahermosa, Tabasco, México
| |
Collapse
|
3
|
Rodrigues JGM, Albuquerque PSV, Nascimento JR, Campos JAV, Godinho ASS, Araújo SJ, Brito JM, Jesus CM, Miranda GS, Rezende MC, Negrão-Corrêa DA, Rocha CQ, Silva LA, Guerra RNM, Nascimento FRF. The immunomodulatory activity of Chenopodium ambrosioides reduces the parasite burden and hepatic granulomatous inflammation in Schistosoma mansoni-infection. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113287. [PMID: 32858197 DOI: 10.1016/j.jep.2020.113287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Folk medicine reports have described the use of Chenopodium ambrosioides as an anti-inflammatory, analgesic, and anthelmintic herb. These effects, including its activity against intestinal worms, are already scientifically observed. However, the immunological mechanisms of this species in the treatment of Schistosoma mansoni infection are unknown. AIM OF THE STUDY To evaluate the immunological and anti-Schistosoma mansoni effects of a crude Chenopodium ambrosioides hydro-alcoholic extract (HCE). MATERIALS AND METHODS For the in vitro analysis, cercariae and adult worms were exposed to different concentrations (0 to 10,000 μg/mL) of the HCE. For the in vivo evaluation, Swiss mice were infected with 50 cercariae of S. mansoni and separated into groups according to treatment as follows: a negative control (without treatment), a positive control (treated with Praziquantel®), HCE1 Group (treated with HCE during the cutaneous phase), HCE2 Group (treated with HCE during the lung phase), HCE3 Group (treated with HCE during the young worm phase), and HCE4 Group (treated with HCE during the adult worm phase). The animals treated with HCE received daily doses of 50 mg/kg, by gavage, for seven days, corresponding to the different developmental stages of S. mansoni. For comparison, a clean control group (uninfected and untreated) was also included. All animals were euthanized 60 days post-infection to allow the following assessments to be performed: a complete blood cells count, counts of eggs in the feces and liver, the quantification of cytokines and IgE levels, histopathological evaluations of the livers, and the analysis of inflammatory mediators. RESULTS HCE treatment increased the mortality of cercariae and adult worms in vitro. The HCE treatment in vivo reduced the eggs in feces and liver. The number and area of liver granulomas, independent of the phase of treatment, were also reduced. The treatment with HCE reduced the percentage of circulating eosinophils, IgE, IFN-γ, TNF-α, and IL-4. In contrast, the treatment with the HCE, dependent on the phase, increased IL-10 levels and the number of peritoneal and bone marrow cells, mainly of T lymphocytes, B lymphocytes, and macrophages. This effect could be due to secondary compounds presents in this extract, such as kaempferol, quercetin and derivatives. CONCLUSIONS This study demonstrates that Chenopodium ambrosioides has antiparasitic and immunomodulatory activity against the different phases of schistosomiasis, reducing the granulomatous inflammatory profile caused by the infection and, consequently, improving the disease prognosis.
Collapse
Affiliation(s)
- João Gustavo Mendes Rodrigues
- Laboratory of Immunophysiology, Centre for Biological and Health Sciences, Federal University of Maranhão, CEP: 65.055-970, São Luís, MA, Brazil.
| | - Paula Sibelly Veras Albuquerque
- Laboratory of Immunophysiology, Centre for Biological and Health Sciences, Federal University of Maranhão, CEP: 65.055-970, São Luís, MA, Brazil.
| | - Johnny R Nascimento
- Laboratory of Immunophysiology, Centre for Biological and Health Sciences, Federal University of Maranhão, CEP: 65.055-970, São Luís, MA, Brazil.
| | - Jaianna Andressa Viana Campos
- Laboratory of Immunophysiology, Centre for Biological and Health Sciences, Federal University of Maranhão, CEP: 65.055-970, São Luís, MA, Brazil.
| | - Andressa S S Godinho
- Laboratory of Immunophysiology, Centre for Biological and Health Sciences, Federal University of Maranhão, CEP: 65.055-970, São Luís, MA, Brazil.
| | - Sulayne Janayna Araújo
- Laboratory of Immunophysiology, Centre for Biological and Health Sciences, Federal University of Maranhão, CEP: 65.055-970, São Luís, MA, Brazil.
| | - Jefferson Mesquita Brito
- Laboratory of Immunophysiology, Centre for Biological and Health Sciences, Federal University of Maranhão, CEP: 65.055-970, São Luís, MA, Brazil.
| | - Caroline M Jesus
- Laboratory of Immunophysiology, Centre for Biological and Health Sciences, Federal University of Maranhão, CEP: 65.055-970, São Luís, MA, Brazil.
| | - Guilherme Silva Miranda
- Laboratory of Immunohelmintology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, CEP: 31.270-901, Belo Horizonte, MG, Brazil; Laboratory of Biology, Department of Education, Federal Institute of Education, CEP: 65.840-000, São Raimundo Das Mangabeiras, MA, Brazil.
| | - Michelle C Rezende
- Laboratory of Immunohelmintology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, CEP: 31.270-901, Belo Horizonte, MG, Brazil.
| | - Deborah Aparecida Negrão-Corrêa
- Laboratory of Immunohelmintology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, CEP: 31.270-901, Belo Horizonte, MG, Brazil.
| | - Cláudia Q Rocha
- Laboratory of Natural Products Chemistry, Department of Chemistry, Federal University of Maranhão, CEP: 65.055-970, São Luís, MA, Brazil.
| | - Lucilene Amorim Silva
- Laboratory of Immunophysiology, Centre for Biological and Health Sciences, Federal University of Maranhão, CEP: 65.055-970, São Luís, MA, Brazil.
| | - Rosane N M Guerra
- Laboratory of Immunophysiology, Centre for Biological and Health Sciences, Federal University of Maranhão, CEP: 65.055-970, São Luís, MA, Brazil.
| | - Flávia R F Nascimento
- Laboratory of Immunophysiology, Centre for Biological and Health Sciences, Federal University of Maranhão, CEP: 65.055-970, São Luís, MA, Brazil.
| |
Collapse
|
4
|
Miguel MG, da Silva CI, Farah L, Castro Braga F, Figueiredo AC. Effect of Essential Oils on the Release of TNF-α and CCL2 by LPS-Stimulated THP‑1 Cells. PLANTS (BASEL, SWITZERLAND) 2020; 10:E50. [PMID: 33379375 PMCID: PMC7824467 DOI: 10.3390/plants10010050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Plants and their constituents have been used to treat diverse ailments since time immemorial. Many plants are used in diverse external and internal formulations (infusions, alcoholic extracts, essential oils (EOs), etc.) in the treatment of inflammation-associated diseases, such as those affecting the respiratory tract or causing gastrointestinal or joint problems, among others. To support the traditional uses of plant extracts, EOs have been assessed for their alleged anti-inflammatory properties. However, the effect of EOs on the release of cytokines and chemokines has been much less reported. Considering their traditional use and commercial relevance in Portugal and Angola, this study evaluated the effect of EOs on the in vitro inhibition of the cytokine tumor necrosis factor-α (TNF-α) and the chemokine (C-C motif) ligand 2 (CCL2) by lipopolysaccharide (LPS)-stimulated human acute monocytic leukemia cells (THP-1 cells). Twenty EOs extracted from eighteen species from seven families, namely from Amaranthaceae (Dysphania ambrosioides), Apiaceae (Foeniculum vulgare), Asteraceae (Brachylaena huillensis, Solidago virgaurea), Euphorbiaceae (Spirostachys africana), Lamiaceae (Lavandula luisieri, Mentha cervina, Origanum majorana, Satureja montana, Thymbra capitata, Thymus mastichina, Thymus vulgaris, Thymus zygis subsp. zygis), Myrtaceae (Eucalyptus globulus subsp. maidenii, Eucalyptus radiata, Eucalyptus viminalis) and Pinaceae (Pinus pinaster) were assayed for the release of CCL2 and TNF-α by LPS-stimulated THP-1 cells. B. huillensis, S. africana, S. montana, Th. mastichina and Th. vulgaris EOs showed toxicity to THP-1 cells, at the lowest concentration tested (10 μg/mL), using the tetrazolium dye assay. The most active EOs in reducing TNF-α release by LPS-stimulated THP-1 cells were those of T. capitata (51% inhibition at 20 μg/mL) and L. luisieri (15-23% inhibition at 30 μg/mL and 78-83% inhibition at 90 μg/mL). L. luisieri EO induced a concentration-dependent inhibition of CCL2 release by LPS‑stimulated THP-1 cells (23%, 54% and 82% inhibition at 10, 30 and 90 μg/mL, respectively). These EOs are potentially useful in the management of inflammatory diseases mediated by CCL2 and TNF‑α, such as atherosclerosis and arthritis.
Collapse
Affiliation(s)
- Maria Graça Miguel
- Mediterranean Institute for Agriculture, Environment and Development (MED), Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Carina Isabel da Silva
- Mediterranean Institute for Agriculture, Environment and Development (MED), Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Luana Farah
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31.270-901 Belo Horizonte, Brazil; (L.F.); (F.C.B.)
| | - Fernão Castro Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31.270-901 Belo Horizonte, Brazil; (L.F.); (F.C.B.)
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal (CBV), DBV, C2, Piso 1, Campo Grande, 1749-016 Lisboa, Portugal;
| |
Collapse
|
5
|
Mateos-Maces L, Chávez-Servia JL, Vera-Guzmán AM, Aquino-Bolaños EN, Alba-Jiménez JE, Villagómez-González BB. Edible Leafy Plants from Mexico as Sources of Antioxidant Compounds, and Their Nutritional, Nutraceutical and Antimicrobial Potential: A Review. Antioxidants (Basel) 2020; 9:E541. [PMID: 32575671 PMCID: PMC7346153 DOI: 10.3390/antiox9060541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/22/2022] Open
Abstract
A review of indigenous Mexican plants with edible stems and leaves and their nutritional and nutraceutical potential was conducted, complemented by the authors' experiences. In Mexico, more than 250 species with edible stems, leaves, vines and flowers, known as "quelites," are collected or are cultivated and consumed. The assessment of the quelite composition depends on the chemical characteristics of the compounds being evaluated; the protein quality is a direct function of the amino acid content, which is evaluated by high-performance liquid chromatography (HPLC), and the contribution of minerals is evaluated by atomic absorption spectrometry, inductively coupled plasma-optical emission spectrometry (ICP-OES) or ICP mass spectrometry. The total contents of phenols, flavonoids, carotenoids, saponins and other general compounds have been analyzed using UV-vis spectrophotometry and by HPLC. For the determination of specific compounds such as phenolic compounds, flavonoids, organic acids and other profiles, it is recommended to use HPLC-DAD, UHPLC-DAD, UFLC-PDA or gas chromatography-mass spectrometry. The current biochemical analysis and biological evaluations were performed to understand the mechanisms of action that lead to decreased glucose levels and lipid peroxidation, increased hypoglycemic and antitumor activity, immune system improvement, increased antibacterial and antifungal activity and, in some cases, anti-Helicobacter pylori activity.
Collapse
Affiliation(s)
- Lourdes Mateos-Maces
- Recursos Genéticos y Productividad-Genética, Colegio de Posgraduados, Carr. México-Texcoco Km. 36.5, Montecillo, Texcoco 56230, Mexico;
| | - José Luis Chávez-Servia
- CIIDIR-Oaxaca, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (A.M.V.-G.); (B.B.V.-G.)
| | | | - Elia Nora Aquino-Bolaños
- Centro de Investigación y Desarrollo de Alimentos, Universidad Veracruzana, Xalapa-Enríquez 1090, Mexico;
| | - Jimena E. Alba-Jiménez
- CONACyT-Centro de Investigación y Desarrollo de Alimentos, Universidad Veracruzana, Xalapa-Enríquez 1090, Mexico;
| | | |
Collapse
|