1
|
Liang X, Su W, Zhang W, Wang S, Wu X, Li X, Gao W. An overview of the research progress on Aconitum carmichaelii Debx.:active compounds, pharmacology, toxicity, detoxification, and applications. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118832. [PMID: 39306209 DOI: 10.1016/j.jep.2024.118832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/18/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum carmichaelii Debx. is the most widely distributed species of Aconitum plants in China and has a long history of medicinal use. Because of its toxicity, A. carmichaelii is classified as lower class in the Shennong Bencao Jing (Shennong's Classic of Materia Medica). According to the theory of Chinese medicine, the roots can be used to revive yang for resuscitation, dispel wind, remove dampness, and relieve pain. AIMS OF THE REVIEW This review focuses on summarizing the latest reports on the components, pharmacology, toxicity, detoxification mechanism and application of A. carmichaelii. It aims to provide ideas for in-depth research on activity mechanism of A. carmichaelii and expanding the value of exploitation and utilization. MATERIALS AND METHODS Information was collected from the following online scientific databases: PubMed, Web of Science, Wiley Online Library, SciFinder, Scopus, PubChem, China National Knowledge Internet (CNKI), etc. Additional data were obtained from other Chinese medicine books. RESULTS In this review, 224 compounds were categorized and new compounds discovered in the last five years were highlighted. The main components of A. carmichaelii are C19-diterpene alkaloids(C19-DAs), among which diester-type aconitine is the most toxic and also the main active ingredient, while monoester diterpene alkaloids (MDAs) and aminol diterpene alkaloids (ADAs) are greatly toxicity reduced due to the loss of ester bond. Heating and compatibility are the means to increase the efficiency and reduce the toxicity of A. carmichaelii. In addition, it also contains abundant C20-diterpene alkaloids (C20-DAs). Like C19-DAs, these compounds also have cardiotonic, anticancer, anti-inflammatory and analgesic pharmacological effects, but their toxicity is weaker. The above-ground part contains not only a variety of MDAs and ADAs, but also contains abundant non-diterpenoid alkaloids and active polysaccharides. In addition to pharmacological effects, we further summarized the mechanisms of cardiotoxicity, neurotoxicity and other toxicity of A. carmichaelii. What's more, the application prospects are also discussed. Polysaccharides and diterpenoid alkaloids in A. carmichaelii and related traditional prescriptions have great promising prospects for the development of new drugs. CONCLUSION A. carmichaelii has rich alkaloids and polysaccharides, but the new compounds discovered in recent years are only in the activity screening stage. The toxic differences between C19- and C20- DAs and the dose that affect toxicity of A. carmichaelii are still not clear. The non-traditional medicinal parts, such as stems and leaves, show great potential for development and utilization. More extensive and in-depth exploration of low-toxic active compounds, as well as the mechanism of efficacy-enhancement and toxicity-attenuation, will help A. carmichaelii to be better and safer used for clinical.
Collapse
Affiliation(s)
- Xv Liang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Wenya Su
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Weimei Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Shirui Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xipei Wu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
| |
Collapse
|
2
|
Shen Q, Ge L, Lu W, Wu H, Zhang L, Xu J, Tang O, Muhammad I, Zheng J, Wu Y, Wang SW, Zeng XX, Xue J, Cheng K. Transplanting network pharmacology technology into food science research: A comprehensive review on uncovering food-sourced functional factors and their health benefits. Compr Rev Food Sci Food Saf 2024; 23:e13429. [PMID: 39217524 DOI: 10.1111/1541-4337.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Network pharmacology is an emerging interdisciplinary research method. The application of network pharmacology to reveal the nutritional effects and mechanisms of active ingredients in food is of great significance in promoting the development of functional food, facilitating personalized nutrition, and exploring the mechanisms of food health effects. This article systematically reviews the application of network pharmacology in the field of food science using a literature review method. The application progress of network pharmacology in food science is discussed, and the mechanisms of functional factors in food on the basis of network pharmacology are explored. Additionally, the limitations and challenges of network pharmacology are discussed, and future directions and application prospects are proposed. Network pharmacology serves as an important tool to reveal the mechanisms of action and health benefits of functional factors in food. It helps to conduct in-depth research on the biological activities of individual ingredients, composite foods, and compounds in food, and assessment of the potential health effects of food components. Moreover, it can help to control and enhance their functionality through relevant information during the production and processing of samples to guarantee food safety. The application of network pharmacology in exploring the mechanisms of functional factors in food is further analyzed and summarized. Combining machine learning, artificial intelligence, clinical experiments, and in vitro validation, the achievement transformation of functional factor in food driven by network pharmacology is of great significance for the future development of network pharmacology research.
Collapse
Affiliation(s)
- Qing Shen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Lijun Ge
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Weibo Lu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Huixiang Wu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Li Zhang
- Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, China
| | - Jun Xu
- Ningbo Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang, China
| | - Oushan Tang
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Imran Muhammad
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Zheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yeshun Wu
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jing Xue
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
3
|
Huang Y, Liu Q, Liu M, Xu L, Li Y, Chen Q, Guan D, Xu J, Lin C, Wang S. System pharmacology-based determination of the functional components and mechanisms in chronic heart failure treatment: an example of Zhenwu decoction. J Biomol Struct Dyn 2023; 42:12935-12953. [PMID: 37921741 DOI: 10.1080/07391102.2023.2274515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
Chronic heart failure (CHF) is the primary cause of death among patients with cardiovascular diseases, representing the advanced stage in the development of several cardiovascular conditions. Zhenwu decoction (ZWD) has gained widespread recognition as an efficacious remedy for CHF due to its potent therapeutic properties and absence of adverse effects. Nevertheless, the precise molecular mechanisms underlying its actions remain elusive. This study endeavors to unravel the intricate pharmacological underpinnings of five herbs within ZWD concerning CHF through an integrated approach. Initially, pertinent data regarding ZWD and CHF were compiled from established databases, forming the foundation for constructing an intricate network of active component-target interactions. Subsequently, a pioneering method for evaluating node significance was formulated, culminating in the creation of core functional association space (CFAS). To discern vital components, a novel dynamic programming algorithm was devised and used to determine the core component group (CCG) within the CFAS. Enrichment analysis of the CCG targets unveiled the potential coordinated molecular mechanisms of ZWD, illuminating its capacity to ameliorate CHF by modulating genes and related signaling pathways involved in pathological remodeling. Notable pathways encompass PI3K-Akt, diabetic cardiomyopathy, cAMP and MAPK signaling. Concluding the computational analyses, in vitro experiments were executed to assess the effects of vanillic acid, paradol, 10-gingerol and methyl cinnamate. Remarkably, these compounds demonstrated efficacy in reducing the production of ANP and BNP within isoprenaline-induced AC 16 cells, further validating their potential therapeutic utility. This investigation underscores the efficacy of the proposed model in enhancing the precision and reliability of CCG selection within ZWD, thereby presenting a novel avenue for mechanistic inquiries, compound refinement and the secondary development of TCM herbs.
Collapse
Affiliation(s)
- Yisheng Huang
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Meiyu Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liqian Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Quanlin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Jindong Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Chunshui Lin
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Sheng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Liu X, Xie X, Luo M, Zhao Y, Li M, Peng F, Peng C. The synergistic compatibility mechanisms of fuzi against chronic heart failure in animals: A systematic review and meta-analysis. Front Pharmacol 2022; 13:954253. [PMID: 36188581 PMCID: PMC9515783 DOI: 10.3389/fphar.2022.954253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/05/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Fuzi’s compatibilities with other medicines are effective treatments for chronic heart failure. Pre-clinical animal experiments have indicated many possible synergistic compatibility mechanisms of it, but the results were not reliable and reproducible enough. Therefore, we performed this systematic review and meta-analysis of pre-clinical animal studies to integrate evidence, conducted both qualitative and quantitative evaluations of the compatibility and summarized potential synergistic mechanisms. Method: An exhaustive search was conducted for potentially relevant studies in nine online databases. The selection criteria were based on the Participants, Interventions, Control, Outcomes, and Study designs strategy. The SYRCLE risk of bias tool for animal trials was used to perform the methodological quality assessment. RevMan V.5.3 and STATA/SE 15.1 were used to perform the meta-analysis following the Cochrane Handbook for Systematic Reviews of Interventions. Result: 24 studies were included in the systematic review and meta-analysis. 12 outcomes were evaluated in the meta-analysis, including BNP, HR, HWI, ALD, LVEDP, LVSP, EF, FS, +dP/dtmax, −dP/dtmax, TNF-α and the activity of Na + -K + -ATPase. Subgroup analyses were performed depending on the modeling methods and duration. Conclusion: The synergistic Fuzi compatibility therapeutic effects against CHF animals were superior to those of Fuzi alone, as shown by improvements in cardiac function, resistance to ventricular remodeling and cardiac damage, regulation of myocardial energy metabolism disorder and RAAS, alleviation of inflammation, the metabolic process in vivo, and inhibition of cardiomyocyte apoptosis. Variations in CHF modeling methods and medication duration brought out possible model–effect and time-effect relationships.
Collapse
Affiliation(s)
- Xingyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaofang Xie, ; Cheng Peng,
| | - Maozhu Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengting Li
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaofang Xie, ; Cheng Peng,
| |
Collapse
|
5
|
Aqueous Extract and Polysaccharide of Aconiti Lateralis Radix Induce Apoptosis and G0/G1 Phase Cell Cycle Arrest by PI3K/AKT/mTOR Signaling Pathway in Mesangial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3664696. [PMID: 35497917 PMCID: PMC9054446 DOI: 10.1155/2022/3664696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 12/03/2022]
Abstract
Mesangial proliferative glomerulonephritis (MesPGN) is a common renal disease that lacks effective drug intervention. Aconiti Lateralis Radix (Fuzi), a natural Chinese medical herb, is found with significant therapeutic effects on various diseases in the clinic. However, its effects on MesPGN have not been reported. This study is aimed to discuss the therapeutic effects of the aqueous extract of Aconiti Lateralis Radix (ALR) and the polysaccharides of Aconiti Lateralis Radix (PALR) on MesPGN as well as the underlying mechanism. In this study, we, firstly, studied the anti-MesPGN mechanism of ALR and PALR. ALR and PALR inhibit the proliferation of the mesangial cells through the PI3K/AKT/mTOR pathway, induce the G0/G1 phase of block and apoptosis, inhibit the activity of Cyclin E and CDK2, increase the expression of Bax, cleaved caspase-8/caspase-8, and cleaved caspase-3/caspase-3 proteins, and effectively inhibit the growth of the mesangial cells. Overall, our data suggest that ALR and PALR may be potential candidates for MesPGN and that PALR is more effective than ALR.
Collapse
|
6
|
Zhang Q, Guo Y, Zhang D. Network Pharmacology Integrated with Molecular Docking Elucidates the Mechanism of Wuwei Yuganzi San for the Treatment of Coronary Heart Disease. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221093907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: The aim of this study was to investigate the pharmacological mechanism of Wuwei Yuganzi San (WYS) in treating coronary heart disease (CHD) using network pharmacology and molecular docking. Methods: The main active components, related targets, and the target genes related to WYS were investigated by the databases Traditional Chinese Medicine Systems Pharmacology and related articles. Information on the target genes of CHD was acquired through the OMIM database and GeneCards database, and the NCBI Gene Expression Omnibus DataSets (GSE71226) were used to acquire target genes of CHD. A Venn diagram was used to show the common targets of WYS and CHD. The compound-target-disease network was built up by Cytoscape 3.7.2, and the protein–protein interaction (PPI) network was acquired through the STRING database. ClusterProfiler and Pathview packages in RStudio software were used to conduct gene ontology enrichment analysis and KEGG pathway enrichment analysis to reveal the underlying mechanism. Finally, AutoDock Vina software was used to assess the binding affinity of significant ingredients and hub genes. Results: Thirty-four key ingredients of WYS in CHD were screened, which related to 59 targets in CHD. According to the results of enrichment analysis, 59 items in the biological process, 15 items in the molecular function, 10 items in the cellular component, and 52 signaling pathways were associated with efficacy. These processes and pathways were essential for cell survival and were related to several crucial factors of CHD, including a disintegrin and metalloprotease 17 (ADAM17), aldo-keto reductase family 1 member C2 (AKR1C2), albumin (ALB), protein kinase B (AKT1), and alcohol dehydrogenase 1C (ADH1C). Based on the outcomes of the PPI network, we selected ADAM17, AKR1C2, ALB, AKT1, ADH1C, and putative ingredients (sennoside D_qt, quercetin, and procyanidin B-5,3'- O-gallate) to perform molecular docking validation. From the molecular docking outcomes, some vital targets of CHD (including ADAM17, AKR1C2, ALB, AKT1, and ADH1C) could be related to form a stable combination with the putative ingredients of WYS. Conclusions: The network pharmacology and molecular docking study elucidated basically the mechanism of WYS in the treatment of CHD.
Collapse
Affiliation(s)
- Qunhui Zhang
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Yang Guo
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Dejun Zhang
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| |
Collapse
|
7
|
Wen J, Li M, Zhang W, Wang H, Bai Y, Hao J, Liu C, Deng K, Zhao Y. Role of Higenamine in Heart Diseases: A Mini-Review. Front Pharmacol 2022; 12:798495. [PMID: 35082678 PMCID: PMC8784381 DOI: 10.3389/fphar.2021.798495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023] Open
Abstract
Higenamine, a natural product with multiple targets in heart diseases, is originally derived from Aconitum, which has been traditionally used in China for the treatment of heart disease, including heart failure, arrhythmia, bradycardia, cardiac ischemia/reperfusion injury, cardiac fibrosis, etc. This study is aimed to clarify the role of higenamine in heart diseases. Higenamine has effects on improving energy metabolism of cardiomyocytes, anti-cardiac fibroblast activation, anti-oxidative stress and anti-apoptosis. Accumulating evidence from various studies has shown that higenamine exerts a wide range of cardiovascular pharmacological effects in vivo and in vitro, including alleviating heart failure, reducing cardiac ischemia/reperfusion injury, attenuating pathological cardiac fibrosis and dysfunction. In addition, several clinical studies have reported that higenamine could continuously increase the heart rate levels of healthy volunteers as well as patients with heart disease, but there are variable effects on systolic blood pressure and diastolic blood pressure. Moreover, the heart protection and therapeutic effects of higenamine on heart disease are related to regulating LKB1/AMPKα/Sirt1, mediating the β2-AR/PI3K/AKT cascade, induction of heme oxygenase-1, suppressing TGF-β1/Smad signaling, and targeting ASK1/MAPK (ERK, P38)/NF-kB signaling pathway. However, the interventional effects of higenamine on heart disease and its underlying mechanisms based on experimental studies have not yet been systematically reviewed. This paper reviewed the potential pharmacological mechanisms of higenamine on the prevention, treatment, and diagnosis of heart disease and clarified its clinical applications. The literature shows that higenamine may have a potent effect on complex heart diseases, and proves the profound medicinal value of higenamine in heart disease.
Collapse
Affiliation(s)
- Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Mingjie Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenwen Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Haoyu Wang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yan Bai
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Junjie Hao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Chuan Liu
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Ke Deng
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Metabolomic Study of Zuojin Pill in Relieving 1-Methyl-3-nitro-1-nitrosoguanidine-Induced Chronic Atrophic Gastritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7004798. [PMID: 34956382 PMCID: PMC8709764 DOI: 10.1155/2021/7004798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
The classic prescription Zuojin Pill (ZJP) shows a good therapeutic effect on chronic atrophic gastritis (CAG); it is of great significance to clarify its specific mechanism. Therefore, we explore the mechanism of ZJP on MNNG-induced CAG by integrating approaches. First of all, through the pathological changes of gastric tissue and the expression level of PGI and PGI/II in serum, the expression of inflammation-related factors was determined by RT-PCR to determine the efficacy. Then, UPLC-Q-TOF/MS was used for plasma and urine metabolomic analysis to screen the specific potential biomarkers and metabolic pathway of ZJP in ameliorating CAG and to explore its possible mechanism. ZJP significantly ameliorate the pathological injury of gastric tissue, increase levels of PGI and PGI/II, and reduce the expression level of proinflammatory factors. Through metabolomic analysis, 9 potential metabolic differences were identified and 6 related metabolic pathways were enriched. These findings indicate for the first time the potential mechanism of ZJP in improving CAG induced by MNNG and are of great significance to the clinical development and application of ZJP-related drugs.
Collapse
|
9
|
Roudsari NM, Lashgari NA, Momtaz S, Roufogalis B, Abdolghaffari AH, Sahebkar A. Ginger: A complementary approach for management of cardiovascular diseases. Biofactors 2021; 47:933-951. [PMID: 34388275 DOI: 10.1002/biof.1777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Inflammation and oxidative stress play critical roles in progression of various types of CVD. Broad pharmacological properties of ginger (the rhizome of Zingiber officinale) and its bioactive components have been reported, suggesting that they can be a therapeutic choice for clinical use. Consistent with its rich phenolic content, the anti-inflammatory and antioxidant properties of ginger have been confirmed in many studies. Ginger modifies many cellular processes and in particular was shown to have potent inhibitory effects against nuclear factor kappa B (NF-κB); signal transducer and activator of transcription; NOD-, LRR-, and pyrin domain-containing proteins; toll-like receptors; mitogen-activated protein kinase; and mammalian target of rapamycin signaling pathways. Ginger also blocks pro-inflammatory cytokines and the activation of the immune system. Ginger suppresses the activity of oxidative molecules such as reactive oxygen species, inducible nitric oxide synthase, superoxide dismutase, glutathione, heme oxygenase, and GSH-Px. In this report, we summarize the biochemical pathologies underpinning a variety of CVDs and the effects of ginger and its bioactive components, including 6-shogaol, 6-gingerol, and 10-dehydrogingerdione. The properties of ginger and its phenolic components, mechanism of action, biological functions, side effects, and methods for enhanced cell delivery are also discussed. Together with preclinical and clinical studies, the positive biological effects of ginger and its bioactive components in CVD support the undertaking of further in vivo and especially clinical studies.
Collapse
Affiliation(s)
- Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Naser-Aldin Lashgari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, Academic Center for Education, Culture and Research, Tehran, Iran
- Toxicology and Disease Group, Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Basil Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, Australia
- National Institute of Complementary Medicine, Western Sydney University, Westmead, Australia
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, Academic Center for Education, Culture and Research, Tehran, Iran
- Toxicology and Disease Group, Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
10
|
Evaluation of the Influence of Zhenwu Tang on the Pharmacokinetics of Digoxin in Rats Using HPLC-MS/MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2673183. [PMID: 34616474 PMCID: PMC8490036 DOI: 10.1155/2021/2673183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023]
Abstract
Digoxin (DIG) is a positive inotropic drug with a narrow therapeutic window that is used in the clinic for heart failure. The active efflux transporter of DIG, P-glycoprotein (P-gp), mediates DIG absorption and excretion in rats and humans. Up to date, several studies have shown that the ginger and Poria extracts in Zhenwu Tang (ZWT) affect P-gp transport activity. This study aimed to explore the effects of ZWT on the tissue distribution and pharmacokinetics of DIG in rats. The deionized water or ZWT (18.75 g/kg) was orally administered to male Sprague–Dawley rats once a day for 14 days as a pretreatment. On day 15, 1 hour after receiving deionized water or ZWT, the rats were given the solution of DIG at 0.045 mg/kg dose, and the collection of blood samples was carried out from the fundus vein or excised tissues at various time points. HPLC-MS/MS was used for the determination of the DIG concentrations in the plasma and the tissues under investigation. The pharmacokinetic interactions between DIG and ZWT after oral coadministration in rats revealed significant reductions in DIG Cmax and AUC0-∞, as well as significant increases in T1/2 and MRT0-∞. When coadministered with ZWT, the DIG concentration in four of the investigated tissues statistically decreased at different time points except for the stomach. This study found that combining DIG with ZWT reduced not only DIG plasma exposure but also DIG accumulation in tissues (heart, liver, lungs, and kidneys). The findings of our study could help to improve the drug's validity and safety in clinical applications and provide a pharmacological basis for the combined use of DIG and ZWT.
Collapse
|
11
|
Wang L, Liang Q, Zhang Y, Liu F, Sun Y, Wang S, Cao H, Meng J. iTRAQ-based quantitative proteomics and network pharmacology revealing hemostatic mechanism mediated by Zingiberis Rhizome Carbonisata in deficiency-cold and Hemorrhagic Syndrome rat models. Chem Biol Interact 2021; 343:109465. [PMID: 33831383 DOI: 10.1016/j.cbi.2021.109465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023]
Abstract
Zingiberis Rhizome Carbonisata (ZRC) has been used as a hemostatic agent in traditional Chinese medicine (TCM). However, the underlying molecular mechanism remains unclear. In this study, network pharmacology method was used to predict the potential mechanism of ZRC on hemostasis, based on the structures of the main compounds. Then, iTRAQ-based quantitative proteomics analysis was used for verification of the candidate target proteins and pathways to illustrate the underlying mechanisms. Furthermore, the differentially expressed proteins (DEPs) in the enriched pathways were validated by Enzyme-linked immunosorbent assay. The results showed that the hemostasis mechanism of ZRC may be related to Platelet activation, Rap1 signaling pathway and Complement and coagulation cascades. And 10 proteins (Fermt3, ACTB, Talin, αIIbβ3, Fga, Fgb, Fgg, FXIIIb, Kng and PLC-β were identified as the target DEPs) are considered as the key factors related to hemostatic efficacy of ZRC. Thus, integrated network pharmacology and quantitative proteomics technology were applied for the effective illuminating the molecular mechanisms of Chinese material medica.
Collapse
Affiliation(s)
- Lyuhong Wang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine, The Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Panyu District, No. 280, Waihuan East Road, Guangzhou, Guangdong Province, 510006, China
| | - Qingguang Liang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine, The Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Panyu District, No. 280, Waihuan East Road, Guangzhou, Guangdong Province, 510006, China
| | - Ying Zhang
- College of Pharmacy, Jinan University / Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Guangzhou, 510632, China
| | - Fei Liu
- Guangdong Hexiang Pharmaceutical Co., Ltd, Guangzhou, 510385, China
| | - Yue Sun
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine, The Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Panyu District, No. 280, Waihuan East Road, Guangzhou, Guangdong Province, 510006, China
| | - Shumei Wang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine, The Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Panyu District, No. 280, Waihuan East Road, Guangzhou, Guangdong Province, 510006, China.
| | - Hui Cao
- College of Pharmacy, Jinan University / Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Guangzhou, 510632, China.
| | - Jiang Meng
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine, The Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Panyu District, No. 280, Waihuan East Road, Guangzhou, Guangdong Province, 510006, China.
| |
Collapse
|
12
|
Ren S, Wei Y, Niu M, Li R, Wang R, Wei S, Wen J, Wang D, Yang T, Chen X, Wu S, Tong Y, Jing M, Li H, Wang M, Zhao Y. Mechanism of rutaecarpine on ethanol-induced acute gastric ulcer using integrated metabolomics and network pharmacology. Biomed Pharmacother 2021; 138:111490. [PMID: 33773465 DOI: 10.1016/j.biopha.2021.111490] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 11/15/2022] Open
Abstract
This study was aimed to explore the mechanism of rutaecarpine (RUT) on ethanol-induced gastric ulcer (GU) in mice by integrated approaches. At first, the efficacy was determined through the macroscopic and microscopic state of stomach tissue and the expression levels of GU-related factors. Then, the serum metabolomics method based on UPLC-Q-TOF/MS was used to explore the specific metabolites and metabolic pathways. Finally, the upstream key protein targets of these specific metabolites were analyzed by network pharmacology and verified by PCR to explore the potential mechanism. RUT alleviated the histological and pathological damage of gastric tissue caused by ethanol, and could remarkably ameliorate the level of GU-related factors. Subsequently, a total of 7 potential metabolites involved in 9 metabolic pathways were identified by metabolomics analysis. Then, a 'component-targets-metabolites' interaction network was constructed, and therefore 4 key target proteins (PLA2G1B, PDE5A, MIF and SRC) that may regulate the specific metabolites were obtained. This case was further verified by the results of PCR. ALL the above results strongly demonstrated that RUT exerted a gastroprotective effect against GU. And it is the first time to combine metabolomics combined with network pharmacology to elucidate the mechanism of RUT on GU, which may be related to the regulation of energy metabolism, oxidative stress, and inflammation, and these pathways may be regulated through the upstream protein PLA2G1B, PDE5A, MIF and SRC.
Collapse
Affiliation(s)
- Sichen Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ying Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ming Niu
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ruilin Wang
- Integrative Medical Center, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Tao Yang
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China; College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xing Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Shihua Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yuling Tong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Manyi Jing
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Haotian Li
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Min Wang
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yanling Zhao
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
13
|
Metabolomics coupled with integrated approaches reveal the therapeutic effects of higenamine combined with [6]-gingerol on doxorubicin-induced chronic heart failure in rats. Chin Med 2020; 15:120. [PMID: 33292391 PMCID: PMC7670783 DOI: 10.1186/s13020-020-00403-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background This study was aimed to investigate the therapeutic effects and potential mechanism of higenamine combined with [6]-gingerol (HG/[6]-GR) against doxorubicin (DOX)—induced chronic heart failure (CHF) in rats. Materials and methods Therapeutic effects of HG/[6]-GR on hemodynamics indices, serum biochemical indicators, histopathology and TUNEL staining of rats were assessed. Moreover, a UHPLC-Q-TOF/MS-based serum metabolic approach was performed to identify the metabolites and possible pathways of HG/[6]-GR on DOX-induced CHF. Results HG/[6]-GR had effects on regulating hemodynamic indices, alleviating serum biochemical indicators, improving the pathological characteristics of heart tissue and reducing the apoptosis of myocardial cells. Serum metabolisms analyses indicated that the therapeutic effects of HG and [6]-GR were mainly associated with the regulation of eight metabolites, including acetylphosphate, 3-Carboxy-1-hydroxypropylthiamine diphosphate, coenzyme A, palmitic acid, PE(O-18:1(1Z)/20:4(5Z,8Z,11Z,14Z)), oleic acid, lysoPC(18:1(9Z)), and PC(16:0/16:0). Pathway analysis showed that HG/[6]-GR on CHF treatment was related to twelve pathways, including glycerophospholipid metabolism, fatty acid metabolism, pantothenate and CoA biosynthesis, citrate cycle (TCA cycle), pyruvate metabolism, and arachidonic acid metabolism. Serum metabolites and metabolic pathways regulated by HG/[6]-GR appear to be related to energy metabolism. Conclusion Multivariate statistical analysis has provided new insights for understanding CHF and investigating the therapeutic effects and mechanisms of HG/[6]-GR, which influencing the metabolites and pathways related to energy metabolism pathway.
Collapse
|