1
|
Domínguez Moré GP, Rey DP, Valderrama IH, Ospina LF, Aragón DM. Rutin and Physalis peruviana Extract: Population Pharmacokinetics in New Zealand Rabbits. Pharmaceutics 2024; 16:1241. [PMID: 39458573 PMCID: PMC11510156 DOI: 10.3390/pharmaceutics16101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: An extract of calyces from Physalis peruviana with hypoglycemic activity is being considered as a potential herbal medicine. Preclinical pharmacokinetics (PK) studies of the extract in rats, focusing on plasma concentrations of its main compound, rutin, and its metabolites, revealed PK interactions in the extract matrix that improved the absorption of rutin metabolites compared to the pure compound, among other PK effects. This research aimed to study the PK of rutin alone and in the extract and assess potential PK interactions in the extract matrix on the flavonoid and its metabolites in rabbits, a nonrodent species; Methods: Animals received pure rutin or extract orally and intravenously. The PK analysis used noncompartmental and population pharmacokinetics (popPK) methods, and simple allometry was applied to predict human PK parameters; Results: The rutin concentration-time profile fit a two-compartment model with first-order elimination, while its metabolites fit a double first-order absorption model. The extract matrix led to increased absorption, distribution, and elimination of rutin as well as increased bioavailability of its metabolites in rabbits; Conclusions: The popPK model defined the equations for PK parameters describing these findings, and the increased volume of distribution and clearance of rutin was maintained in human predictions. These results will support the development of a new herbal medicine.
Collapse
Affiliation(s)
- Gina Paola Domínguez Moré
- Centro de Servicios Farmacéuticos y Monitoreo de Fármacos, Facultad de Química y Farmacia, Universidad del Atlántico, Carrera 30 # 8-49, Puerto Colombia 081001, Colombia;
- Departamento de Farmacia, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03 Edif. 450, Bogotá 111321, Colombia; (D.P.R.); (I.H.V.); (L.F.O.)
| | - Diana P. Rey
- Departamento de Farmacia, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03 Edif. 450, Bogotá 111321, Colombia; (D.P.R.); (I.H.V.); (L.F.O.)
| | - Ivonne H. Valderrama
- Departamento de Farmacia, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03 Edif. 450, Bogotá 111321, Colombia; (D.P.R.); (I.H.V.); (L.F.O.)
| | - Luis F. Ospina
- Departamento de Farmacia, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03 Edif. 450, Bogotá 111321, Colombia; (D.P.R.); (I.H.V.); (L.F.O.)
| | - Diana Marcela Aragón
- Departamento de Farmacia, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03 Edif. 450, Bogotá 111321, Colombia; (D.P.R.); (I.H.V.); (L.F.O.)
| |
Collapse
|
2
|
Khan KU, Minhas MU, Badshah SF, Suhail M, Ahmad A, Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci 2022; 291:120301. [PMID: 34999114 DOI: 10.1016/j.lfs.2022.120301] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022]
Abstract
Poor aqueous solubility and poor bioavailability are major issues with many pharmaceutical industries. By some estimation, 70-90% drug candidates in development stage while up-to 40% of the marketed products are poorly soluble which leads to low bioavailability, reduced therapeutic effects and dosage escalation. That's why solubility is an important factor to consider during design and manufacturing of the pharmaceutical products. To-date, various strategies have been explored to tackle the issue of poor solubility. This review article focuses the updated overview of commonly used macro and nano drug delivery systems and techniques such as micronization, solid dispersion (SD), supercritical fluid (SCF), hydrotropy, co-solvency, micellar solubilization, cryogenic technique, inclusion complex formation-based techniques, nanosuspension, solid lipid nanoparticles, and nanogels/nanomatrices explored for solubility enhancement of poorly soluble drugs. Among various techniques, nanomatrices were found a promising and impeccable strategy for solubility enhancement of poorly soluble drugs. This article also describes the mechanism of action of each technique used in solubilization enhancement.
Collapse
Affiliation(s)
- Kifayat Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha City, Punjab, Pakistan.
| | - Syed Faisal Badshah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan Ist Road, Kaohsiung City 807, Taiwan, ROC
| | - Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
3
|
Kasali FM, Tuyiringire N, Peter EL, . Ahovegbe LY, Ali MS, Tusiimire J, Ogwang PE, Kadima JN, Agaba AG. Chemical constituents and evidence-based pharmacological properties of Physalis peruviana L.: An overview. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2022.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Physalis peruviana L. is among plant species possessing evident nutritional, nutraceutical, and commercial interests. This review highlights the complexity of the chemical composition supporting the multiple pharmacotherapeutic indications and dietary values of this plant through evidence-based studies from Google Scholar, PubMed/Medline, SciFinder, Science Direct, Scopus, the Wiley online library, and Web of Science. The literature mentions at least 40 compounds isolated from different parts; others are still under investigation. High yields in carotenoids, amino acids, minerals, vitamin C, vitamin E, and essential fatty acids have healthy nutritional benefits. Various phytoconstituents, particularly withanolides, exhibit anti-carcinogenic, anti-inflammatory, and antidiabetic potentials, as well as cardiovascular and liver protective effects. Prospective studies reveal that the leaves would also provide various beneficial bioactive chemicals worth being isolated. However, clinical evidence-based studies are seldom. Therefore, adequate pharmaceutical formulations and more in-depth controlled clinical trials are needed to fill the gap.
Collapse
Affiliation(s)
- Félicien Mushagalusa Kasali
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, PO. Box 1410, Mbarara, Uganda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, PO. Box 570 Bukavu, Democratic Republic of the Congo
| | - Naasson Tuyiringire
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, PO. Box 1410, Mbarara, Uganda
- School of Nursing and Midwifery, College of Medicine and Health Sciences, University of Rwanda, University Avenue, PO. Box 56, Butare, Rwanda
| | - Emanuel L Peter
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, PO. Box 1410, Mbarara, Uganda
- National Institute for Medical Research, Department of Innovation, Technology Transfer & Commercialization, PO. Box 9653, Dar es Salaam, Tanzania
| | - Lucrèce Y . Ahovegbe
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, PO. Box 1410, Mbarara, Uganda
- Laboratory of Immunology, Infectious and Allergic Diseases, ISBA and FAST, University of Abomey-Calavi, P.O. BOX: 04 BP 1221 Cotonou, Benin
| | - Muhammad Shaiq Ali
- H.E.J. Research Institute of Chemistry, International Centre for Chemical & Biological Sciences, University of Karachi, PO. Box 75270 Karachi, Pakistan
| | - Jonans Tusiimire
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, PO. Box 1410, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, PO. Box 1410, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, PO. Box 1410, Mbarara, Uganda
| | - Justin Ntokamunda Kadima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, PO. Box 570 Bukavu, Democratic Republic of the Congo
- Department of Pharmacology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, PO. Box 117 Huye, Rwanda
| | - Amon Ganafa Agaba
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, PO. Box 1410 Mbarara, Uganda
| |
Collapse
|
4
|
Domínguez Moré GP, Cardona MI, Sepúlveda PM, Echeverry SM, Oliveira Simões CM, Aragón DM. Matrix Effects of the Hydroethanolic Extract of Calyces of Physalis peruviana L. on Rutin Pharmacokinetics in Wistar Rats Using Population Modeling. Pharmaceutics 2021; 13:pharmaceutics13040535. [PMID: 33921404 PMCID: PMC8069016 DOI: 10.3390/pharmaceutics13040535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Rutin is the rutinose conjugate of quercetin. It presents several biological activities and is the major flavonoid in the hydroalcoholic extract of the calyces of Physalis peruviana L. It also shows hypoglycemic activity after oral administration. The aim of this work was to study the matrix effects of the extract from P. peruviana calyces on the pharmacokinetics of rutin and its metabolites in Wistar rats, using non-compartmental and population pharmacokinetic analyses. A pharmacokinetic study was performed after intravenous and oral administration of different doses of pure rutin and the extract. In the non-compartmental analysis, it was found that rutin from the extract exhibited higher distribution and clearance, as well as an 11-fold increase in the bioavailability of its active metabolites. A population pharmacokinetic model was also carried out with two compartments, double absorption and linear elimination, in which the extract and the doses were the covariates involved. This model correctly described the differences observed between rutin as a pure compound and rutin from the extract, including the dose dependency.
Collapse
Affiliation(s)
- Gina Paola Domínguez Moré
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 11011, Colombia; (G.P.D.M.); (M.I.C.); (P.M.S.); (S.M.E.)
- Centro de Servicios Farmacéuticos y Monitoreo de Fármacos, Facultad de Química y Farmacia, Universidad del Atlántico, Puerto Colombia 081001, Colombia
| | - María Isabel Cardona
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 11011, Colombia; (G.P.D.M.); (M.I.C.); (P.M.S.); (S.M.E.)
| | - Paula Michelle Sepúlveda
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 11011, Colombia; (G.P.D.M.); (M.I.C.); (P.M.S.); (S.M.E.)
| | - Sandra Milena Echeverry
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 11011, Colombia; (G.P.D.M.); (M.I.C.); (P.M.S.); (S.M.E.)
| | - Cláudia Maria Oliveira Simões
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina—UFSC, Florianópolis 88040-970, Brazil;
| | - Diana Marcela Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 11011, Colombia; (G.P.D.M.); (M.I.C.); (P.M.S.); (S.M.E.)
- Correspondence:
| |
Collapse
|