1
|
Liu Y, Wu J, Liu R, Li F, Xuan L, Wang Q, Li D, Chen X, Sun H, Li X, Jin C, Huang D, Li L, Tang G, Liu B. Vibrio cholerae virulence is blocked by chitosan oligosaccharide-mediated inhibition of ChsR activity. Nat Microbiol 2024; 9:2909-2922. [PMID: 39414933 DOI: 10.1038/s41564-024-01823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2024] [Indexed: 10/18/2024]
Abstract
Vibrio cholerae causes cholera, an important cause of death worldwide. A fuller understanding of how virulence is regulated offers the potential for developing virulence inhibitors, regarded as efficient therapeutic alternatives for cholera treatment. Here we show using competitive infections of wild-type and mutant bacteria that the regulator of chitosan utilization, ChsR, increases V. cholerae virulence in vivo. Mechanistically, RNA sequencing, chromatin immunoprecipitation with sequencing and molecular biology approaches revealed that ChsR directly upregulated the expression of the virulence regulator, TcpP, which promoted expression of the cholera toxin and the toxin co-regulated pilus, in response to low O2 levels in the small intestine. We also found that chitosan degradation products inhibit the ChsR-tcpP promoter interaction. Consistently, administration of chitosan oligosaccharide, particularly when delivered via sodium alginate microsphere carriers, reduced V. cholerae intestinal colonization and disease severity in mice by blocking the chsR-mediated pathway. These data reveal the potential of chitosan oligosaccharide as supplemental therapy for cholera treatment and prevention.
Collapse
Affiliation(s)
- Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - XinTong Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Hao Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Xiaoya Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Chen Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Di Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Linxing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China.
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, People's Republic of China.
- Nankai International Advanced Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
2
|
Manna T, Chandra Guchhait K, Jana D, Dey S, Karmakar M, Hazra S, Manna M, Jana P, Panda AK, Ghosh C. Wastewater-based surveillance of Vibrio cholerae: Molecular insights on biofilm regulatory diguanylate cyclases, virulence factors and antibiotic resistance patterns. Microb Pathog 2024; 196:106995. [PMID: 39368563 DOI: 10.1016/j.micpath.2024.106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Vibrio cholerae is an inherent inhabitant of aquatic ecosystems. The Indian state of West Bengal, especially the Gangetic delta region is the highest cholera affected region and is considered as the hub of Asiatic cholera. V. cholerae were isolated from publicly accessible wastewater of Midnapore, West Bengal, India. Serotyping determined all isolates to be of non-O1/non-O139 serogroups. Moderate biofilm-forming abilities were noticed in most of the isolates (74.7 %) while, high biofilm formation was recorded for only 6.3 % isolates and 19 % of isolates exhibited low/non-biofilm-forming abilities. PCR-based screening of crucial diguanylate cyclases (DGCs) involved in cyclic-di-GMP-mediated biofilm signaling was performed. cdgH and cdgM were the most abundant DGCs among 93.7 % and 91.5 % of isolates, respectively. Other important DGCs, i.e., cdgK, cdgA, cdgL, and vpvC were present in 84 %, 75.5 %, 72 % and 68 % of isolates, respectively. Besides, the non-O1/non-O139 isolates were screened for the occurrence of virulence factor encoding genes. Moreover, among these non-O1/non-O139 isolates, two strains (3.17 %) harbored both ctxA and ctxB genes, which encode the cholera toxin associated with epidemic cholera. ompU was the most prevalent virulence factor, present in 24.8 % of isolates. Other virulence factors like, zot and st were found in 4.7 % and 9.5 % of isolates. Genes encoding tcp and ace were found to be PCR-negative for the isolates. Additionally, crucial virulence factor regulators, toxT, toxR and hapR were found to be PCR-positive in all the isolates. Antibiotic resistance patterns displayed further vulnerabilities with decreased sensitivity towards commonly used antibiotics with multiple antibiotic resistance index ranging between 0.37 and 0.62. The presence of cholera toxin-encoding multi-drug resistant (MDR) V. cholerae strains in environmental settings is alarming. High occurrence of DGCs are considered to encourage further investigations to use them as alternative therapeutic targets against MDR cholera pathogen due to their unique presence in bacterial systems.
Collapse
Affiliation(s)
- Tuhin Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | | | - Debarati Jana
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subhamoy Dey
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India; Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, India
| | - Monalisha Karmakar
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subrata Hazra
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Mousumi Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Pradip Jana
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Chandradipa Ghosh
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India.
| |
Collapse
|
3
|
Owen AE, Chima CM, Ahmad I, Emori W, Agwamba EC, Cheng CR, Benjamin I, Patel H, Ahuekwe EF, Ojong MA, Ubah CB, Manicum ALE, Louis H. Antibacterial Potential of Trihydroxycyclohexa-2,4-Diene-1-Carboxylic Acid: Insight from DFT, Molecular Docking, and Molecular Dynamic Simulation. Polycycl Aromat Compd 2024; 44:2128-2151. [DOI: 10.1080/10406638.2023.2214280] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/07/2023] [Indexed: 09/21/2024]
Affiliation(s)
- Aniekan E. Owen
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Chioma M. Chima
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Division of Computer-Aided Drug Design, R. C. Patel Institute of Pharmaceutical Education and Research, Maharashtra, India
| | - Wilfred Emori
- Department of Chemistry, Sichuan University of Science & Engineering, Zigong, Sichuan, P. R. China
| | - Ernest C. Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, Covenant University, Otta, Nigeria
| | - Chun-Ru Cheng
- Department of Chemistry, Sichuan University of Science & Engineering, Zigong, Sichuan, P. R. China
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Harun Patel
- Department of Pharmaceutical Chemistry, Division of Computer-Aided Drug Design, R. C. Patel Institute of Pharmaceutical Education and Research, Maharashtra, India
| | - Eze F. Ahuekwe
- Department of Microbiology, Covenant University, Otta, Nigeria
| | - Mmefone A. Ojong
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Chioma B. Ubah
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | | | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
4
|
Saif-Ur-Rahman KM, Mamun R, Hasan M, Meiring JE, Khan MA. Oral killed cholera vaccines for preventing cholera. Cochrane Database Syst Rev 2024; 1:CD014573. [PMID: 38197546 PMCID: PMC10777452 DOI: 10.1002/14651858.cd014573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Cholera causes acute watery diarrhoea and death if not properly treated. Outbreaks occur in areas with poor sanitation, including refugee camps. Several vaccines have been developed and tested over the last 50 years. This is an update of a Cochrane review, originally published in 1998, which explored the effects of all vaccines for preventing cholera. This review examines oral vaccines made from killed bacteria. OBJECTIVES To assess the effectiveness and safety of the available World Health Organization (WHO)-prequalified oral killed cholera vaccines among children and adults. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; CENTRAL, MEDLINE; Embase; LILACS; and two trials registers (February 2023). SELECTION CRITERIA We included randomized controlled trials (RCTs), including cluster-RCTs. There were no restrictions on the age and sex of the participants or the setting of the study. We considered any available WHO-prequalified oral killed cholera vaccine as an intervention. The control group was given a placebo, another vaccine, or no vaccine. The outcomes were related to vaccine effectiveness and safety. We included articles published in English only. DATA COLLECTION AND ANALYSIS Two review authors independently applied the inclusion criteria and extracted data from included studies. We assessed the risk of bias using the Cochrane ROB 1 assessment tool. We used the generic inverse variance and a random-effects model meta-analysis to estimate the pooled effect of the interventions. We assessed the certainty of the evidence using the GRADE approach. For vaccine effectiveness (VE), we converted the overall risk ratio (RR) to vaccine effectiveness using the formula: VE = (1 - RR) x 100%. MAIN RESULTS Five RCTs, reported in 12 records, with 462,754 participants, met the inclusion criteria. We identified trials on whole-cell plus recombinant vaccine (WC-rBS vaccine (Dukoral)) from Peru and trials on bivalent whole-cell vaccine (BivWC (Shanchol)) vaccine from India and Bangladesh. We did not identify any trials on other BivWC vaccines (Euvichol/Euvichol-Plus), or Hillchol. Two doses of Dukoral with or without a booster dose reduces cases of cholera at two-year follow-up in a general population of children and adults, and at five-month follow-up in an adult male population (overall VE 76%; RR 0.24, 95% confidence interval (CI) 0.08 to 0.65; 2 trials, 16,423 participants; high-certainty evidence). Two doses of Shanchol reduces cases of cholera at one-year follow-up (overall VE 37%; RR 0.63, 95% CI 0.47 to 0.85; 2 trials, 241,631 participants; high-certainty evidence), at two-year follow-up (overall VE 64%; RR 0.36, 95% CI 0.16 to 0.81; 2 trials, 168,540 participants; moderate-certainty evidence), and at five-year follow-up (overall VE 80%; RR 0.20, 95% CI 0.15 to 0.26; 1 trial, 54,519 participants; high-certainty evidence). A single dose of Shanchol reduces cases of cholera at six-month follow-up (overall VE 40%; RR 0.60, 95% CI 0.47 to 0.77; 1 trial, 204,700 participants; high-certainty evidence), and at two-year follow-up (overall VE 39%; RR 0.61, 95% CI 0.53 to 0.70; 1 trial, 204,700 participants; high-certainty evidence). A single dose of Shanchol also reduces cases of severe dehydrating cholera at six-month follow-up (overall VE 63%; RR 0.37, 95% CI 0.28 to 0.50; 1 trial, 204,700 participants; high-certainty evidence), and at two-year follow-up (overall VE 50%; RR 0.50, 95% CI 0.42 to 0.60; 1 trial, 204,700 participants; high-certainty evidence). We found no differences in the reporting of adverse events due to vaccination between the vaccine and control/placebo groups. AUTHORS' CONCLUSIONS Two doses of Dukoral reduces cases of cholera at two-year follow-up. Two doses of Shanchol reduces cases of cholera at five-year follow-up, and a single dose of Shanchol reduces cases of cholera at two-year follow-up. Overall, the vaccines were safe and well-tolerated. We found no trials on other BivWC vaccines (Euvichol/Euvichol-Plus). However, BivWC products (Shanchol, Euvichol/Euvichol-Plus) are considered to produce comparable vibriocidal responses. Therefore, it is reasonable to apply the results from Shanchol trials to the other BivWC products (Euvichol/Euvichol-Plus).
Collapse
Affiliation(s)
- K M Saif-Ur-Rahman
- Health Systems and Population Studies Division, icddr,b, Dhaka, Bangladesh
- College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Evidence Synthesis Ireland and Cochrane Ireland, University of Galway, Galway, Ireland
| | - Razib Mamun
- Department of Public Health and Health Systems, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Md Hasan
- Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
- Department of Community Health Science, Max Rady College of Medicine, University of Manitoba, Manitoba, Canada
| | - James E Meiring
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Md Arifuzzaman Khan
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Central Queensland Public Health Unit, Central Queensland Hospital and Health Service, Department of Health, Queensland, Australia
| |
Collapse
|
5
|
Silva LDD, Pinheiro JLS, Rodrigues LHM, Santos VMRD, Borges JLF, Oliveira RRD, Maciel LG, Araújo TDSL, Martins CDS, Gomes DA, Lira EC, Souza MHLP, Medeiros JVR, Damasceno ROS. Crucial role of carbon monoxide as a regulator of diarrhea caused by cholera toxin: Evidence of direct interaction with toxin. Biochem Pharmacol 2023; 216:115791. [PMID: 37689274 DOI: 10.1016/j.bcp.2023.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The present study evaluated the role of heme oxygenase 1 (HO-1)/carbon monoxide (CO) pathway in the cholera toxin-induced diarrhea and its possible action mechanism. The pharmacological modulation with CORM-2 (a CO donor) or Hemin (a HO-1 inducer) decreased the intestinal fluid secretion and Cl- efflux, altered by cholera toxin. In contrast, ZnPP (a HO-1 inhibitor) reversed the antisecretory effect of Hemin and potentiated cholera toxin-induced intestinal secretion. Moreover, CORM-2 also prevented the alteration of intestinal epithelial architecture and local vascular permeability promoted by cholera toxin. The intestinal absorption was not altered by any of the pharmacological modulators. Cholera toxin inoculation also increased HO-1 immunoreactivity and bilirubin levels, a possible protective physiological response. Finally, using fluorometric technique, ELISA assay and molecular docking simulations, we show evidence that CO directly interacts with cholera toxin, forming a complex that affects its binding to GM1 receptor, which help explain the antisecretory effect. Thus, CO is an essential molecule for protection against choleric diarrhea and suggests its use as a possible therapeutic tool.
Collapse
Affiliation(s)
- Lorena Duarte da Silva
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | | | | | | - Dayane Aparecida Gomes
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Eduardo Carvalho Lira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Jand Venes Rolim Medeiros
- Biotechnology and Biodiversity Center Research, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | | |
Collapse
|
6
|
Almagro-Moreno S, Martinez-Urtaza J, Pukatzki S. Vibrio Infections and the Twenty-First Century. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:1-16. [PMID: 36792868 DOI: 10.1007/978-3-031-22997-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The Vibrionaceae is a highly diverse family of aquatic bacteria. Some members of this ubiquitous group can cause a variety of diseases in humans ranging from cholera caused by Vibrio cholerae, severe septicemia caused by Vibrio vulnificus, to acute gastroenteritis by Vibrio parahaemolyticus. Planet Earth is experiencing unprecedented changes of planetary scale associated with climate change. These environmental perturbations paired with overpopulation and pollution are increasing the distribution of pathogenic Vibrios and exacerbating the risk of causing infections. In this chapter, we discuss various aspects of Vibrio infections within the context of the twenty-first century with a major emphasis on the aforementioned pathogenic species. Overall, we believe that the twenty-first century is posed to be both one full of challenges due to the rise of these pathogens, and also a catalyst for innovative and groundbreaking discoveries.
Collapse
Affiliation(s)
- Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA. .,National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA.
| | - Jaime Martinez-Urtaza
- Department de Genetica I de Microbiologia, Facultat de Biociencies, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Stefan Pukatzki
- Department of Biology, The City College of New York, New York, NY, USA
| |
Collapse
|
7
|
Saricaoglu B, Gültekin Subaşı B, Karbancioglu-Guler F, Lorenzo JM, Capanoglu E. Phenolic compounds as natural microbial toxin detoxifying agents. Toxicon 2023; 222:106989. [PMID: 36509264 DOI: 10.1016/j.toxicon.2022.106989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Despite the abundance of promising studies, developments, and improvements about the elimination of microbial toxins from food matrices, they are still considered as one of the major food safety problems due to the lack of their complete avoidance even today. Every year, many crops and foodstuffs have to be discarded due to unconstrained contamination and/or production of microbial toxins. Furthermore, the difficulty for the detection of toxin presence and determination of its level in foods may lead to acute or chronic health problems in many individuals. On the other hand, phenolic compounds might be considered as microbial toxin detoxification agents because of their inhibition effect on the toxin synthesis of microorganisms or exhibiting protective effects against varying damaging mechanisms caused by toxins. In this study, the effect of phenolic compounds on the synthesis of bacterial toxins and mycotoxins is comprehensively reviewed. The potential curing effect of phenolic compounds against toxin-induced damages has also been discussed. Consequently, phenolic compounds are indicated as promising, and considerable natural preservatives against toxin damages and their detoxification potentials are pronounced.
Collapse
Affiliation(s)
- Beyza Saricaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Büşra Gültekin Subaşı
- Hafik Kamer Ornek Vocational School, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Funda Karbancioglu-Guler
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Jose Manuel Lorenzo
- Centro Tecnológico de La Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia nº 4, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, 32004 Ourense, Spain
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
8
|
White C, Bader C, Teter K. The manipulation of cell signaling and host cell biology by cholera toxin. Cell Signal 2022; 100:110489. [PMID: 36216164 PMCID: PMC10082135 DOI: 10.1016/j.cellsig.2022.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
Vibrio cholerae colonizes the small intestine and releases cholera toxin into the extracellular space. The toxin binds to the apical surface of the epithelium, is internalized into the host endomembrane system, and escapes into the cytosol where it activates the stimulatory alpha subunit of the heterotrimeric G protein by ADP-ribosylation. This initiates a cAMP-dependent signaling pathway that stimulates chloride efflux into the gut, with diarrhea resulting from the accompanying osmotic movement of water into the intestinal lumen. G protein signaling is not the only host system manipulated by cholera toxin, however. Other cellular mechanisms and signaling pathways active in the intoxication process include endocytosis through lipid rafts, retrograde transport to the endoplasmic reticulum, the endoplasmic reticulum-associated degradation system for protein delivery to the cytosol, the unfolded protein response, and G protein de-activation through degradation or the function of ADP-ribosyl hydrolases. Although toxin-induced chloride efflux is thought to be an irreversible event, alterations to these processes could facilitate cellular recovery from intoxication. This review will highlight how cholera toxin exploits signaling pathways and other cell biology events to elicit a diarrheal response from the host.
Collapse
Affiliation(s)
- Christopher White
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Carly Bader
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Ken Teter
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
9
|
Chowdhury F, Ross AG, Islam MT, McMillan NAJ, Qadri F. Diagnosis, Management, and Future Control of Cholera. Clin Microbiol Rev 2022; 35:e0021121. [PMID: 35726607 PMCID: PMC9491185 DOI: 10.1128/cmr.00211-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera, caused by Vibrio cholerae, persists in developing countries due to inadequate access to safe water, sanitation, and hygiene. There are approximately 4 million cases and 143,000 deaths each year due to cholera. The disease is transmitted fecally-orally via contaminated food or water. Severe dehydrating cholera can progress to hypovolemic shock due to the rapid loss of fluids and electrolytes, which requires a rapid infusion of intravenous (i.v.) fluids. The case fatality rate exceeds 50% without proper clinical management but can be less than 1% with prompt rehydration and antibiotics. Oral cholera vaccines (OCVs) serve as a major component of an integrated control package during outbreaks or within zones of endemicity. Water, sanitation, and hygiene (WaSH); health education; and prophylactic antibiotic treatment are additional components of the prevention and control of cholera. The World Health Organization (WHO) and the Global Task Force for Cholera Control (GTFCC) have set an ambitious goal of eliminating cholera by 2030 in high-risk areas.
Collapse
Affiliation(s)
- Fahima Chowdhury
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Allen G. Ross
- Rural Health Research Institute, Charles Sturt University, Orange, New South Wales, Australia
| | - Md Taufiqul Islam
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Nigel A. J. McMillan
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Firdausi Qadri
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
10
|
Ross AG, Khanam F, Islam MT, Chowdhury F, Sleigh AC. Diagnosis and Management of Acute Enteropathogens in Returning Travelers. Int J Infect Dis 2022; 123:34-40. [DOI: 10.1016/j.ijid.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022] Open
|
11
|
A blueprint for eliminating cholera by 2030. Nat Med 2022; 28:1747-1749. [DOI: 10.1038/s41591-022-01898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Sousa FBM, Pacheco G, Oliveira AP, Nicolau LAD, Lopes ALF, Ferreira-Fernandes H, Pinto GR, Medeiros JVR. Mechanism of preservation of the intestinal mucosa architecture and NF-κB/PGE2 reduction by hydrogen sulfide on cholera toxin-induced diarrhea in mice. Life Sci 2021; 284:119869. [PMID: 34358552 DOI: 10.1016/j.lfs.2021.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
AIMS Investigate the involvement of Hydrogen sulfide (H2S) in inflammatory parameters and intestinal morphology caused by cholera toxin (CT) in mice. MAIN METHODS Mice were subjected to the procedure of inducing diarrhea by CT in the isolated intestinal loop model. The intestinal loops were inoculated with H2S donor molecules (NaHS and GYY 4137) or saline and CT. To study the role of EP2 and EP4 prostaglandin E2 (PGE2) receptors in the H2S antisecretory effect, PAG (DL-propargylglycine - inhibitor of cystathionine-γ-lyase (CSE)), PF-04418948 (EP2 antagonist) and ONO-AE3-208 (EP4 antagonist) were used. The intestinal loops were evaluated for intestinal secretion, relation of the depth of villi and intestinal crypts, and real-time PCR for the mRNA of the CXCL2, IL-6, NOS-2, IL-17, NF-κB1, NF-κBIA, SLC6A4 and IFN-γ genes. KEY FINDINGS H2S restored the villus/crypt depth ratio caused by CT. NaHS and GYY 4137 increased the expression of NF-κB1 and for the NF-κBIA gene, only GYY 4137 increased the expression of this gene. The increased expression of NF-κB inhibitors, NF-κB1 and NF-κBIA by H2S indicates a possible decrease in NF-κB activity. The pretreatment with PAG reversed the protective effect of PF-04418948 and ONO-AE3-208, indicating that H2S probably decreases PGE2 because in the presence of antagonists of this pathway, PAG promotes intestinal secretion. SIGNIFICANCE Our results point to a protective activity of H2S against CT for promoting a protection of villus and crypt intestine morphology and also that its mechanism occurs at least in part due to decreasing the activity of NF-κB and PGE2.
Collapse
Affiliation(s)
- Francisca B M Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil; Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil
| | - Gabriella Pacheco
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Ana P Oliveira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil; Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil
| | - Lucas A D Nicolau
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - André L F Lopes
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Hygor Ferreira-Fernandes
- Laboratory of Genetics and Molecular Biology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Giovanny R Pinto
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil; Laboratory of Genetics and Molecular Biology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Jand V R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil; Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
13
|
Chatterjee T, Saha T, Sarkar P, Hoque KM, Chatterjee BK, Chakrabarti P. The gold nanoparticle reduces Vibrio cholerae pathogenesis by inhibition of biofilm formation and disruption of the production and structure of cholera toxin. Colloids Surf B Biointerfaces 2021; 204:111811. [PMID: 33965751 DOI: 10.1016/j.colsurfb.2021.111811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Formation of biofilm by Vibrio cholerae plays a crucial role in pathogenesis and transmission of cholera. Lower infective dose of the biofilm form of V. cholerae compared to the planktonic counterpart, and its antibiotic resistance, make it challenging to combat cholera. Nanoparticles may serve as an effective alternative to conventional antibiotics for targeting biofilms and virulence factors. We explored the effectiveness of gold nanoparticles (AuNPs) of different size and shape (spherical: AuNS10 and AuNS100, and rod: AuNR10, the number indicating the diameter in nm) on both the inhibition of formation and eradication of biofilm of the two biotypes of V. cholerae, classical (VcO395) and El Tor (VcN16961). Inhibition of biofilm formation by spherical AuNPs was observed for both the biotypes. Considering eradication, the biofilms for both, particularly El Tor, was destroyed using both the AuNSs, AuNS100 showing higher efficacy. AuNR10 did not affect the biofilm of either biotype. Micrographs of small intestinal sections of VcO395-infected mice indicated the inhibition of biofilm formation by both AuNSs. We also studied the effect of these AuNPs on the structure of cholera toxin (CT), the major toxin produced by V. cholerae. Far-UV CD showed both AuNR10 and AuNS100 compromised the structure of CT, which was also validated from the reduction of fluid accumulation in mice ileal loop. Western blot analysis revealed the reduction of CT production upon treatment with AuNPs. AuNS100 seems to be the best suited to inhibit the formation or destruction of biofilm, as well as to disrupt CT production and function.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, 700054, India.
| | - Tultul Saha
- Division of Molecular Pathophysiology, National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India
| | - Paramita Sarkar
- Division of Molecular Pathophysiology, National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India
| | - Kazi Mirajul Hoque
- Division of Molecular Pathophysiology, National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Barun K Chatterjee
- Department of Physics, Bose Institute, 93/1 A.P.C. Road, Kolkata, 700054, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, 700054, India
| |
Collapse
|