1
|
Nadri P, Zahmatkesh A, Bakhtari A. The potential effect of melatonin on in vitro oocyte maturation and embryo development in animals. Biol Reprod 2024; 111:529-542. [PMID: 38753882 DOI: 10.1093/biolre/ioae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
Melatonin is a hormone mainly secreted by the pineal gland during the circadian cycle, with low levels during the daytime and prominent levels during the night. It is involved in numerous physiological functions including the immune system, circadian rhythm, reproduction, fertilization, and embryo development. In addition, melatonin exerts anti-inflammatory and antioxidant effects inside the body by scavenging reactive oxygen and reactive nitrogen species, increasing antioxidant defenses, and blocking the transcription factors of pro-inflammatory cytokines. Its protective activity has been reported to be effective in various reproductive biotechnological processes, including in vitro maturation (IVM), embryo development, and survival rates. In this comprehensive review, our objective is to summarize and debate the potential mechanism and impact of melatonin on oocyte maturation and embryo development through various developmental routes in different mammalian species.
Collapse
Affiliation(s)
- Parisa Nadri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Bacterial Vaccines Research and Production, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azizollah Bakhtari
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
2
|
Punetha M, Saini S, Chaudhary S, Bala R, Sharma M, Kumar P, Kumar D, Yadav PS. Mitochondria-targeted antioxidant MitoQ ameliorates ROS production and improves cell viability in cryopreserved buffalo fibroblasts. Tissue Cell 2023; 82:102067. [PMID: 36958101 DOI: 10.1016/j.tice.2023.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Cryopreservation commonly decreases the cellular functionality and post-thaw viability of cells. Reactive oxygen species (ROS) generated during cryopreservation degrade mitochondrial activity and promote the release of cytochrome C which activates caspases required for apoptosis. Antioxidants have the potential to improve the recovery efficiency of cells by reducing ROS production and maintaining mitochondrial membrane potential (MMP). The present study was conducted to explore the role of MitoQ, a derivative of coenzyme Q10 on cryopreserved fibroblasts derived from buffalo skin. To achieve our goal, buffalo skin fibroblasts were treated with varying concentrations of MitoQ (0, 0.1, 0.5, 1, 2, and 10 μM) for 24, 48, and 72 h. The MMP, ROS generation, cell viability was measured by flow cytometry. Furthermore, expression of genes related to mitochondrial oxidative stress (NRF2, GPX, and SOD), apoptosis (BAK and caspase 3) and cell proliferation (AKT) were also assessed. The results showed that over a period of 72 h lower concentrations of MitoQ (0.1-0.5 μM) decrease the ROS production, improves MMP and cell viability whilst the high concentration of MitoQ (2-10 μM) increased the oxidative damage to the cells. Taken together, our study provide important insights into the novel role of MitoQ in cryopreserved buffalo skin fibroblasts. In conclusion, we demonstrated the dose-dependent functional role of MitoQ on cryopreserved fibroblasts for improving post-thaw cell viability and cellular function.
Collapse
Affiliation(s)
- Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Suman Chaudhary
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Renu Bala
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Maninder Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India.
| | - P S Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India.
| |
Collapse
|
3
|
Abedpour N, Javanmard MZ, Karimipour M, Farjah GH. Chlorogenic acid improves functional potential of follicles in mouse whole ovarian tissues in vitro. Mol Biol Rep 2022; 49:10327-10338. [PMID: 36097112 DOI: 10.1007/s11033-022-07793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chlorogenic acid (CGA) is one of the well-known polyphenol compounds possessing several important biological and therapeutic functions. In order to optimize a culture system to achieve complete development of follicles, we focused on the effects of CGA supplementation during in vitro culture (IVC) on follicular development, oxidative stress, antioxidant capacity, developmental gene expression, and functional potential in cultured mouse ovarian tissue. METHODS AND RESULTS The collected whole murine ovaries were randomly divided into four groups: (1) non-cultured group (control 1) with 7-day-old mouse ovaries, (2) non-cultured group (control 2) with 14-day-old mouse ovaries, (3) cultured group (experimental 1) with the culture plates containing only the basic culture medium, (4) cultured group (experimental 2) with the culture plates containing basic culture medium + CGA (50, 100 and 200 µmol/L CGA). Afterward, histological evaluation, biochemical analyses, the expression assessment of genes related to follicular development and apoptosis as well as the analysis of 17-β-estradiol were performed. The results showed that supplementation of ovarian tissue with the basic culture media using CGA (100 µmol/l) significantly increased the survival, developmental and functional potential of follicles in whole mouse ovarian tissues after 7 days of culture. Furthermore, CGA (100 µmol/L) attenuated oxidative damage and enhanced the concentration of antioxidant capacity along with developmental gene expression. CONCLUSION It seems that supplementation of ovarian tissue with culture media using CGA could optimize follicular growth and development in the culture system.
Collapse
Affiliation(s)
- Neda Abedpour
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Masoumeh Zirak Javanmard
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Karimipour
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholam Hossein Farjah
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Wang XQ, Liu RP, Wang J, Luo D, Li YH, Jiang H, Xu YN, Kim NH. Wedelolactone facilitates the early development of parthenogenetically activated porcine embryos by reducing oxidative stress and inhibiting autophagy. PeerJ 2022; 10:e13766. [PMID: 35910774 PMCID: PMC9332323 DOI: 10.7717/peerj.13766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/30/2022] [Indexed: 01/17/2023] Open
Abstract
Wedelolactone (WDL) is a coumaryl ether compound extracted from the traditional Chinese medicinal plant, Eclipta prostrata L. It is a natural polyphenol that exhibits a variety of pharmacological activities, such as anti-inflammatory, anti-free radical, and antioxidant activities in the bone, brain, and ovary. However, its effect on embryonic development remains unknown. The present study explored the influence of WDL supplementation of porcine oocytes culture in vitro on embryonic development and the underlying mechanisms and its effect on the levels of Kelch-like ECH-associated protein 1/nuclear factor-erythroid 2-related factor 2/antioxidant response element (Keap1/Nrf2/ARE). The results showed that WDL (2.5 nM) significantly increased the blastocyst formation rate, mitochondrial activity, and proliferation ability while reducing the reactive oxygen species accumulation, apoptosis, and autophagy. These findings suggested that WDL can enhance the growth and development of early porcine embryos to alleviate oxidative stress and autophagy through regulating NRF2 and microtubule-associated protein 1 light chain 3 (MAP1LC3) gene expression levels.
Collapse
Affiliation(s)
- Xin-Qin Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Rong-Ping Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Dan Luo
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Hao Jiang
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
5
|
Nadri P, Ansari-Mahyari S, Jafarpour F, Mahdavi AH, Tanhaei Vash N, Lachinani L, Dormiani K, Nasr-Esfahani MH. Melatonin accelerates the developmental competence and telomere elongation in ovine SCNT embryos. PLoS One 2022; 17:e0267598. [PMID: 35862346 PMCID: PMC9302776 DOI: 10.1371/journal.pone.0267598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
SCNT embryos suffer from poor developmental competence (both in vitro and in vivo) due to various defects such as oxidative stress, incomplete epigenetic reprogramming, and flaws in telomere rejuvenation. It is very promising to ameliorate all these defects in SCNT embryos by supplementing the culture medium with a single compound. It has been demonstrated that melatonin, as a multitasking molecule, can improve the development of SCNT embryos, but its function during ovine SCNT embryos is unclear. We observed that supplementation of embryonic culture medium with 10 nM melatonin for 7 days accelerated the rate of blastocyst formation in ovine SCNT embryos. In addition, the quality of blastocysts increased in the melatonin-treated group compared with the SCNT control groups in terms of ICM, TE, total cell number, and mRNA expression of NANOG. Mechanistic studies in this study revealed that the melatonin-treated group had significantly lower ROS level, apoptotic cell ratio, and mRNA expression of CASPASE-3 and BAX/BCL2 ratio. In addition, melatonin promotes mitochondrial membrane potential and autophagy status (higher number of LC3B dots). Our results indicate that melatonin decreased the global level of 5mC and increased the level of H3K9ac in the treated blastocyst group compared with the blastocysts in the control group. More importantly, we demonstrated for the first time that melatonin treatment promoted telomere elongation in ovine SCNT embryos. This result offers the possibility of better development of ovine SCNT embryos after implantation. We concluded that melatonin can accelerate the reprogramming of telomere length in sheep SCNT embryos, in addition to its various beneficial effects such as increasing antioxidant capacity, reducing DNA damage, and improving the quality of derived blastocysts, all of which led to a higher in vitro development rate.
Collapse
Affiliation(s)
- Parisa Nadri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Saeid Ansari-Mahyari
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- * E-mail: (SAM); , (MHNE)
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Nima Tanhaei Vash
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Liana Lachinani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- * E-mail: (SAM); , (MHNE)
| |
Collapse
|
6
|
Yao Y, Yang A, Li G, Wu H, Deng S, Yang H, Ma W, Lv D, Fu Y, Ji P, Tan X, Zhao W, Lian Z, Zhang L, Liu G. Melatonin promotes the development of sheep transgenic cloned embryos by protecting donor and recipient cells. Cell Cycle 2022; 21:1360-1375. [PMID: 35311450 PMCID: PMC9345622 DOI: 10.1080/15384101.2022.2051122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The yield efficiency of transgenic animal generation is relatively low[1]. To improve its efficiency has become a priority task for researchers[2]. Melatonin (N-acetyl-5-methoxytryptamine, MT) is a potent-free radical scavenger and antioxidant to protect mitochondria, lipids, protein and DNA from oxidative stress[3]. In this study, we observed that improving the quality of both donor and recipient cells by giving physiological concentration (10-7 M) of MT significantly increase the sheep transgenic embryo development in the in vitro condition. MT promotes the donor cell viability, proliferation, efficiency of monoclonal formation and the electrotransferring efficiency of fetal fibroblast cells (FFCs). The mechanistic exploration indicates that MT has the capacity for the synchronization of cell division cycle, reduction of cellular oxidative stress, apoptosis, and the increase of mitochondrial number and function. All of these render MT's ability to increase the efficiency of animal transgenic processes such as somatic cell nuclear transfer (SCNT) and electroporation. The outcomes are the increased cleavage rate and blastocyst rate of the transgenic sheep embryos after MT treatment. These beneficial effects of MT on transgenic embryo development are worth to be tested in the in vivo condition in the future.
Collapse
Affiliation(s)
- Yujun Yao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ailing Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guangdong Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shoulong Deng
- Cas Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hai Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenkui Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongying Lv
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- CONTACT Zhengxing Lian National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Lu Zhang National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Guoshi Liu National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Exogenous Melatonin in the Culture Medium Does Not Affect the Development of In Vivo-Derived Pig Embryos but Substantially Improves the Quality of In Vitro-Produced Embryos. Antioxidants (Basel) 2022; 11:antiox11061177. [PMID: 35740074 PMCID: PMC9220299 DOI: 10.3390/antiox11061177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Cloned and transgenic pigs are relevant human disease models and serve as potential donors for regenerative medicine and xenotransplantation. These technologies demand oocytes and embryos of good quality. However, the current protocols for in vitro production (IVP) of pig embryos give reduced blastocyst efficiency and embryo quality compared to in vivo controls. This is likely due to culture conditions jeopardizing embryonic homeostasis including the effect of reactive oxygen species (ROS) influence. In this study, the antioxidant melatonin (1 nM) in the maturation medium, fertilization medium, or both media was ineffective in enhancing fertilization or embryonic development parameters of in vitro fertilized oocytes. Supplementation of melatonin in the fertilization medium also had no effect on sperm function. In contrast, the addition of melatonin to the embryo culture medium accelerated the timing of embryonic development and increased the percentages of cleaved embryos and presumed zygotes that developed to the blastocyst stage. Furthermore, it increased the number of inner mass cells and the inner mass cell/total cell number ratio per blastocyst while increasing intracellular glutathione and reducing ROS and DNA damage levels in embryos. Contrarily, the addition of melatonin to the embryo culture medium had no evident effect on in vivo-derived embryos, including the developmental capacity and the quality of in vivo-derived 4-cell embryos or the percentage of genome-edited in vivo-derived zygotes achieving the blastocyst stage. In conclusion, exogenous melatonin in the embryo culture medium enhances the development and quality of in vitro-derived embryos but not in in vivo-derived embryos. Exogenous melatonin is thus recommended during embryo culture of oocytes matured and fertilized in vitro for improving porcine IVP efficiency.
Collapse
|
8
|
Bao Z, Li G, Wang R, Xue S, Zeng Y, Deng S. Melatonin Improves Quality of Repeated-Poor and Frozen-Thawed Embryos in Human, a Prospective Clinical Trial. Front Endocrinol (Lausanne) 2022; 13:853999. [PMID: 35634513 PMCID: PMC9136395 DOI: 10.3389/fendo.2022.853999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE In this study, two experiments were performed to assess the effect and the role of melatonin on human in vitro embryo quality. METHODS Experiment I: A total of 42 repeated-poor-quality-embryo patients were enrolled, with a total of 181 oocytes retrieval cycles. After IVF, for the same patient, the MT cycles group (10-7 M melatonin added to the culture medium; n=48) were compared with the previous non-MT cycles group (n=133), following by in vitro culture to blastocyst stage and embryo transfer. 31 patients were transplanted with 65 embryo transfer, including 24 MT embryo transfer, 41 non-MT embryo transfer. Cycle outcomes were compared between the two groups. Experiment II:A total of 143 supernumerary human cleavage-stage embryos (from non-repeated-poor-quality-embryo patients) vitrified on Day 3 after IVF were warmed and randomized into two groups: melatonin group (10-7 M melatonin added to the culture medium; n=71) and control group (n=72), and then cultured for 72 h. Rate of blastocyst and high-quality blastocyst, reactive oxygen species (ROS) levels of culture media as well as embryonic GPX1, CAT, Mn-SOD, Cu/Zn-SOD, BCL-2, BAX gene expression levels were analyzed. RESULTS Experiment I: Results showed that the rate of Day 3 high-quality embryos (29.6% vs.19.5%) in the MT cycles group was significantly higher than that in the non-MT cycles group (P<0.05). The rate of available blastocysts (17.1% vs.12.7%) and clinical pregnancy rate (25.0% vs.17.1%) were in tendency higher in the group treated with melatonin (P>0.05). Experiment II:Results showed that the blastocyst rates in the melatonin administered group were significantly higher than in control group (42.25% vs.26.38%, P<0.05). There were no significant differences in high-quality blastocyst rates. In addition, quantitative PCR showed that the expression of CAT was significantly upregulated by melatonin treatment (P<0.05), while there were no significant differences in the expression of GPX1, Mn-SOD, Cu/Zn-SOD, BAX and BCL-2 gene as well as the levels of ROS. CONCLUSION These data showed that melatonin supplement in the culture medium will improve Day 3 high-quality embryos rate of repeated-poor-quality-embryo patients and improve blastocyst rate of vitrified-warmed cleavage-stage embryos, suggesting that melatonin intervention may provide a potential rescue strategy for IVF failures. CLINICAL TRIAL REGISTRATION identifier [ChiCTR2200059773].
Collapse
Affiliation(s)
- Zhongjian Bao
- Reproductive Center, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China
| | - Guangdong Li
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rongxiang Wang
- Center for Reproductive Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Songguo Xue
- Center for Reproductive Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Songguo Xue, ; Yong Zeng, ; Shoulong Deng,
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- *Correspondence: Songguo Xue, ; Yong Zeng, ; Shoulong Deng,
| | - Shoulong Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- *Correspondence: Songguo Xue, ; Yong Zeng, ; Shoulong Deng,
| |
Collapse
|
9
|
Guo Z, Chen W, Lv L, Liu D. Meta-analysis of melatonin treatment and porcine somatic cell nuclear transfer embryo development. Anim Reprod 2021; 18:e20210031. [PMID: 34840610 PMCID: PMC8607851 DOI: 10.1590/1984-3143-ar2021-0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
Porcine somatic cell nuclear transfer (SCNT) plays an important role in many areas of research. However, the low efficiency of SCNT in porcine embryos limits its applications. Porcine embryos contain high concentrations of lipid, which makes them vulnerable to oxidative stress. Some studies have used melatonin to reduce reactive oxygen species damage. At present there are many reports concerning the effect of exogenous melatonin on porcine SCNT. Some studies suggest that the addition of melatonin can increase the number of blastocyst cells, while others indicate that melatonin can reduce the number of blastocyst cells. Therefore, a meta-analysis was carried out to resolve the contradiction. In this study, a total of 63 articles from the past 30 years were analyzed, and six papers were finally selected. Through the analysis, it was found that the blastocyst rate was increased by adding exogenous melatonin. Melatonin had no effect on cleavage rate or the number of blastocyst cells, but did decrease the number of apoptotic cells. This result is crucial for future research on embryo implantation.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Combining Farming and Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Ministry of Agriculture and Rural Affairs, Harbin, P. R., China
| | - Wengui Chen
- Animal Science and Technology College, Northeast Agricultural University, Harbin, P. R., China
| | - Lei Lv
- Wood Science Research Institute of Heilongjiang Academy of Forestry, Harbin, P. R., China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Ministry of Agriculture and Rural Affairs, Harbin, P. R., China
| |
Collapse
|
10
|
Qu J, Sun M, Wang X, Song X, He H, Huan Y. Melatonin Enhances the Development of Porcine Cloned Embryos by Improving DNA Methylation Reprogramming. Cell Reprogram 2020; 22:156-166. [PMID: 32207988 DOI: 10.1089/cell.2019.0103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Incomplete DNA methylation reprogramming in cloned embryos leads to poor cloning efficiency. Melatonin has been proven to improve the development of cloned embryos, however, the role of melatonin during somatic cell nuclear transfer remains unclear. This work demonstrated that 10-7 M melatonin significantly enhanced the developmental progress, reduced the arrested rate before zygotic genome activation, and upregulated the blastocyst rate of cloned embryos. Melatonin also promoted the pseudo-pronucleus formation, increased blastocyst cell number, and reduced embryo apoptosis through upregulating the expression of antiapoptosis factors while downregulating the transcription of proapoptosis genes. Further study displayed that DNA methylation reprogramming related genes were greatly improved in cloned embryos when treated with melatonin; then, melatonin effectively promoted genomic DNA demethylation and DNA remethylation, DNA demethylation of pluripotency related gene Oct4, DNA methylation maintenance of imprinted gene H19/Igf2, and DNA remethylation of tissue-specific gene Thy1 in cloned embryos. Thus, zygotic genome activation related gene Eif1a, pluripotency related genes Oct4, Nanog, and Sox2, imprinted genes Igf2 and H19, and blastocyst quality related genes Cdx2 and ATP1b1 were remarkably upregulated, and tissue-specific genes Thy1 and Col5a2 were considerably silenced. In conclusion, melatonin enhanced the development of cloned embryos by ameliorating DNA methylation reprogramming. This work reveals that melatonin can regulate DNA methylation reprogramming and provides a novel insight to improve cloning efficiency.
Collapse
Affiliation(s)
- Jiadan Qu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mingjun Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiangyu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xuexiong Song
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hongbin He
- College of Life Science, Shandong Normal University, Jinan, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
11
|
Yang L, Wang Q, Cui M, Li Q, Mu S, Zhao Z. Effect of Melatonin on the In Vitro Maturation of Porcine Oocytes, Development of Parthenogenetically Activated Embryos, and Expression of Genes Related to the Oocyte Developmental Capability. Animals (Basel) 2020; 10:ani10020209. [PMID: 32012669 PMCID: PMC7070577 DOI: 10.3390/ani10020209] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Exogenous melatonin has beneficial effects on improving cumulus oophorus expansion; mitochondrial distribution; intracellular level of glutathione; and first polar body extrusion rate of porcine oocytes derived from in vitro maturation. Moreover; melatonin supplementation increases relative abundances of BMP15 and CAT mRNA; and decreases intracellular levels of reactive oxygen species; and expression values of P53 and BAX genes; which are related to in vitro development of porcine oocytes. Abstract Melatonin treatment can improve quality and in vitro development of porcine oocytes, but the mechanism of improving quality and developmental competence is not fully understood. In this study, porcine cumulus–oocyte complexes were cultured in TCM199 medium with non-treated (control), 10−5 M luzindole (melatonin receptor antagonist), 10−5 M melatonin, and melatonin + luzindole during in vitro maturation, and parthenogenetically activated (PA) embryos were treated with nothing (control), or 10−5 M melatonin. Cumulus oophorus expansion, oocyte survival rate, first polar body extrusion rate, mitochondrial distribution, and intracellular levels of reactive oxygen species (ROS) and glutathione of oocytes, and cleavage rate and blastocyst rate of the PA embryos were assessed. In addition, expression of growth differentiation factor 9 (GDF9), tumor protein p53 (P53), BCL2 associated X protein (BAX), catalase (CAT), and bone morphogenetic protein 15 (BMP15) were analyzed by real-time quantitative PCR. The results revealed that melatonin treatment not only improved the first polar body extrusion rate and cumulus expansion of oocytes via melatonin receptors, but also enhanced the rates of cleavage and blastocyst formation of PA embryos. Additionally, melatonin treatment significantly increased intraooplasmic level of glutathione independently of melatonin receptors. Furthermore, melatonin supplementation not only significantly enhanced mitochondrial distribution and relative abundances of BMP15 and CAT mRNA, but also decreased intracellular level of ROS and relative abundances of P53 and BAX mRNA of the oocytes. In conclusion, melatonin enhanced the quality and in vitro development of porcine oocytes, which may be related to antioxidant and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Ling Yang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China; (L.Y.); (Q.W.); (Z.Z.)
| | - Qingkai Wang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China; (L.Y.); (Q.W.); (Z.Z.)
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
| | - Maosheng Cui
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
- Correspondence:
| | - Qianjun Li
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
| | - Shuqin Mu
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
| | - Zimo Zhao
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China; (L.Y.); (Q.W.); (Z.Z.)
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
| |
Collapse
|
12
|
Leem J, Bai GY, Kim JS, Oh JS. Melatonin protects mouse oocytes from DNA damage by enhancing nonhomologous end-joining repair. J Pineal Res 2019; 67:e12603. [PMID: 31370106 DOI: 10.1111/jpi.12603] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Mammalian oocytes remain arrested at the first prophase of meiosis in ovarian follicles for an extended period. During this protracted arrest, oocytes are remarkably susceptible to the accumulation of DNA damage. Melatonin (N-acetyl-5-methoxytryptamine), a hormone secreted by the pineal gland, has diverse effects on various physiological processes. However, the effect of melatonin on DNA damage response in mammalian oocytes has not been explored. Here, we showed that melatonin protected mouse oocytes from DNA damage induced by double-strand breaks (DSBs) during prophase arrest and subsequently improved oocyte quality. We found that DNA damage during prophase arrest impaired subsequent meiotic maturation and deteriorated oocyte quality, increasing chromosome fragmentation, spindle abnormality, mitochondrial aggregation, and oxidative stress. However, melatonin treatment during DNA damage accumulation at prophase improved meiotic maturation and relieved the quality decline of oocytes. In addition, melatonin inhibited the accumulation of DNA damage during prophase arrest by reducing the γ-H2AX levels. Although activated ATM levels were decreased by melatonin treatment, the effect of melatonin on DNA damage response was not a direct consequence of ATM inhibition. Instead, melatonin enhanced DNA repair via nonhomologous end-joining (NHEJ) pathway. Interestingly, these actions of melatonin on DNA damage response are receptor-independent in mouse oocytes. Therefore, our results demonstrated that melatonin protects oocytes from DNA damage during prophase arrest by enhancing DNA repair via NHEJ and subsequently prevents the deterioration of oocyte quality during meiotic maturation.
Collapse
Affiliation(s)
- Jiyeon Leem
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Guang-Yu Bai
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
13
|
Lee AR, Hong K, Choi SH, Park C, Park JK, Lee JI, Bang JI, Seol DW, Lee JE, Lee DR. Anti-apoptotic Regulation Contributes to the Successful Nuclear Reprogramming Using Cryopreserved Oocytes. Stem Cell Reports 2019; 12:545-556. [PMID: 30799275 PMCID: PMC6411484 DOI: 10.1016/j.stemcr.2019.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/19/2023] Open
Abstract
Cryopreservation has a negative effect on the quality of oocytes and may be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. The purpose of the present study was to evaluate the detrimental effects on the developmental competence of somatic cell nuclear transferred (SCNT) mouse embryos using vitrified (cryopreserved) oocytes and to evaluate the recovery effects of melatonin on cryo-damage in cloned embryos. Development of SCNT embryos using cryopreserved oocyte cytoplasm (SCNT-CROC) was inferior to those using fresh cytoplasm (SCNT-FOC). Using RNA-sequencing analysis, we found upregulation of eight pro-apoptotic-related genes (Cyct, Dapk2, Dffb, Gadd45g, Hint2, Mien1, P2rx7, and Pmaip) in the SCNT-CROC group. Furthermore, the addition of melatonin, an agent that reduces apoptosis and ROS production, enhanced blastocyst formation rates in the SCNT-CROP group when compared with the melatonin-untreated group. Additionally, melatonin treatment increased the derivation efficiency of pluripotent stem cells from cloned embryos using cryopreserved oocyte. Cloned mouse embryos using cryopreserved oocytes have shown increased apoptosis The addition of melatonin reduces apoptosis and ROS production Melatonin enhances development of the SCNT embryos using cryopreserved oocytes This system will be helpful in the derivation and application of human SCNT-ESC line
Collapse
Affiliation(s)
- Ah Reum Lee
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pankyo-ro, Seongnam-si, Gyeonggi-do, 13488 Seoul, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | - Seo Hye Choi
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pankyo-ro, Seongnam-si, Gyeonggi-do, 13488 Seoul, Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | - Jae Kyun Park
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | - Jin Il Lee
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | - Jae Il Bang
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pankyo-ro, Seongnam-si, Gyeonggi-do, 13488 Seoul, Korea
| | - Dong-Won Seol
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pankyo-ro, Seongnam-si, Gyeonggi-do, 13488 Seoul, Korea
| | - Jeoung Eun Lee
- CHA Stem Cell Institute, CHA University, Seongnam, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pankyo-ro, Seongnam-si, Gyeonggi-do, 13488 Seoul, Korea; CHA Stem Cell Institute, CHA University, Seongnam, Korea.
| |
Collapse
|
14
|
Analysis of Apoptosis on the Somatic Cell Nuclear Transfer embryos in porcine. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.3.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
15
|
Wang YK, Yu XX, Liu YH, Li X, Liu XM, Wang PC, Liu S, Miao JK, Du ZQ, Yang CX. Reduced nucleic acid methylation impairs meiotic maturation and developmental potency of pig oocytes. Theriogenology 2018; 121:160-167. [PMID: 30165304 DOI: 10.1016/j.theriogenology.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022]
Abstract
Oocyte meiosis is a complex process coordinated by multiple endocrinal and molecular circuits. Recently, N6-methyladenosine (m6A) epigenetic modification on RNA is revealed to be important for meiotic maturation. However, the molecular mechanism of how m6A modification exerts its effect on oocyte maturation is largely unknown. Here, we showed that endogenous m6A writers (Mettl3 and Wtap) and eraser (Fto) elevated their transcript levels during meiotic maturation of pig oocytes. From germinal vesicle (GV) to metaphase II (MII) stages, global m6A level significantly increased, and existed mostly in ooplasm. Methyl donor (betaine, 16 mM) treatment of porcine cumulus-oocyte complexes (COCs) during in vitro maturation (IVM) significantly boosted nucleic acid m6A level within oocytes, but unchanged meiotic process and oocyte subsequent development. By contrast, methylation inhibitor (cycloleucine, 20 mM) reduced nucleic acid m6A level, and significantly decreased the germinal vesicle breakdown (GVBD) rate, the extrusion rate of the first polar body, and the cleavage and blastocyst rates of parthenotes. In addition, in cycloleucine-treated oocytes Wtap increased but Lin28 decreased their abundances significantly, along with the higher incidence of spindle defects and chromosome misalignment. Furthermore, pT161-CDK1 protein level in pig oocytes was confirmed to be decreased after cycloleucine treatment for 24 h. Taken together, chemical induced reduction of nucleic acid m6A methylation during pig oocyte meiosis could impair meiotic maturation and subsequent development potency, possibly through down-regulating pluripotency marker Lin28 mRNA abundance and disturbing MPF-regulated chromosome/spindle organization.
Collapse
Affiliation(s)
- Yan-Kui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xiao-Xia Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xiao-Man Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Pei-Chao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Shuai Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Jia-Kun Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
16
|
Tao J, Yang M, Wu H, Ma T, He C, Chai M, Zhang X, Zhang J, Ding F, Wang S, Deng S, Zhu K, Song Y, Ji P, Liu H, Lian Z, Liu G. Effects of AANAT overexpression on the inflammatory responses and autophagy activity in the cellular and transgenic animal levels. Autophagy 2018; 14:1850-1869. [PMID: 29985091 DOI: 10.1080/15548627.2018.1490852] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To explore the anti-inflammatory activity of endogenous produced melatonin, a melatonin-enriched animal model (goat) with AANAT transfer was successfully generated with somatic cell nuclear transfer (SCNT) technology. Basically, a pIRES2-EGFP-AANAT expression vector was constructed and was transferred into the female fetal fibroblast cells (FFCs) via electrotransfection and then the nuclear of the transgenic FFC was transferred to the eggs of the donor goats. The peripheral blood mononuclear cells (PBMCs) of the transgenic offspring expressed significantly higher levels of AANAT and melatonin synthetic function than those PBMCs from the wild-type (WT) animals. After challenge with lipopolysaccharide (LPS), the transgenic PBMCs had increased autophagosomes and LC3B expression while they exhibited suppressed production of the proinflammatory cytokines, IL1B and IL12 (IL12A-IL12B/p70), compared to their WT. The mechanistic analysis indicated that the anti-inflammatory activity of endogenous melatonin was mediated by MTNR1B (melatonin receptor 1B). MTNR1B stimulation activated the MAPK14 signaling pathway to promote cellular macroautophagy/autophagy, thus, suppressing the excessive inflammatory response of cellular. However, when the intact animals challenged with LPS, the serum proinflammatory cytokines were significantly higher in the transgenic goats than that in the WT. The results indicated that endogenous melatonin inhibited the MAPK1/3 signaling pathway and ROS production, subsequently downregulated gene expression of BECN1, ATG5 in PMBCs and then suppressed the autophagy activity of PBMCs and finally elevated levels of serum proinflammatory cytokines in transgenic animals, Herein we provided a novel melatonin-enriched animal model to study the potential effects of endogenously produced melatonin on inflammatory responses and autophagy activity.
Collapse
Affiliation(s)
- Jingli Tao
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Minghui Yang
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Hao Wu
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Teng Ma
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Changjiu He
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China.,b College of Animal Science and Technology , Huazhong Agricultural University , Wuhan , China
| | - Menglong Chai
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Xiaosheng Zhang
- c Institute of Animal Husbandry and Veterinary , Academy of Agricultural Sciences of Tianjin , Tianjin , China
| | - Jinlong Zhang
- c Institute of Animal Husbandry and Veterinary , Academy of Agricultural Sciences of Tianjin , Tianjin , China
| | - Fangrong Ding
- d State Key Laboratory of Agrobiotechnology, College of Biological Sciences , China Agricultural University , Beijing , China
| | - Sutian Wang
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Shoulong Deng
- e State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing , China
| | - Kuanfeng Zhu
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Yukun Song
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Pengyun Ji
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Haijun Liu
- c Institute of Animal Husbandry and Veterinary , Academy of Agricultural Sciences of Tianjin , Tianjin , China
| | - Zhengxing Lian
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Guoshi Liu
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| |
Collapse
|
17
|
Wang H, Pu Y, Luo L, Li Y, Zhang Y, Cao Z. Membrane receptor-independent inhibitory effect of melatonin on androgen production in porcine theca cells. Theriogenology 2018; 118:63-71. [PMID: 29885642 DOI: 10.1016/j.theriogenology.2018.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 01/24/2023]
Abstract
Excessive secretion of androgens including androstenedione and testosterone in theca cells frequently causes female infertility in mammals. Melatonin is a potent inhibitor of androgen production in gonadal cells of several species in a membrane receptor-dependent manner. However, the function of melatonin in steroidogenesis of porcine theca cells remains unclear. Here we report that melatonin inhibits androgen biosynthesis independently of its membrane receptors in pigs. Using flow cytometry, immunofluorescence and RT-PCR we showed that the vast majority of cells isolated from the theca layer of antral follicles are indeed theca cells. Furthermore, we demonstrated that of the two of melatonin membrane receptors encoded in the porcine genome, theca cells exclusively express melatonin receptor 1B. Cell counting analysis indicated that different concentrations of melatonin did not alter the normal viability and proliferation of theca cells. Additionally, hormone radioimmunoassay and qPCR respectively showed that a high concentration of melatonin significantly repressed both androgen production and expression of steroidogenic genes involving StAR, CYP11A1, HSD3β and SET (P < 0.05), but did not impair progesterone production. Interestingly, these effects were not reversed by N-acetyl-2-benzyltryptamin, a melatonin membrane receptor antagonist. Overall, these results demonstrate that melatonin inhibits androgen production in porcine theca cells independently of its membrane receptor.
Collapse
Affiliation(s)
- Heng Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yong Pu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Lei Luo
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
18
|
Zhang Y, Qu P, Ma X, Qiao F, Ma Y, Qing S, Zhang Y, Wang Y, Cui W. Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation. PLoS One 2018; 13:e0196785. [PMID: 29718981 PMCID: PMC5931650 DOI: 10.1371/journal.pone.0196785] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
Abstract
Serum starvation is a routine protocol for synchronizing nuclear donor cells to G0/G1 phase during somatic cell nuclear transfer (SCNT). However, abrupt serum deprivation can cause serious stress to the cells cultured in vitro, which might result in endoplasmic reticulum (ER) stress, chromosome damage, and finally reduce the success rate of SCNT. In the present study, the effects of tauroursodeoxycholic acid (TUDCA), an effective ER stress-relieving drug, on the nuclear donor cells under serum deprivation condition as well as following SCNT procedures were first assessed in the bovine. The results showed that TUDCA significantly reduced ER stress and cell apoptosis in those nuclear donor cells. Moreover, it significantly decreased the expression of Hdac1 and Dnmt1, and increased the level of H3K9 acetylation in nuclear donor cells compared with control group. SCNT reconstructed embryos cloned from TUDCA-treated donor cells showed significantly higher fusion, cleavage, blastocyst formation rate, total cell number in day 7 blastocysts, and lower apoptotic index than that from control group. In addition, the expression of Hdac1, Dnmt1 and Bax was significantly lower in blastocysts derived from TUDCA-treated donor cells than that from control group. In conclusion, TUDCA significantly reduced the ER stress of nuclear donor cells under serum starvation condition, and significantly improved the developmental competence of following SCNT reconstructed embryos when these TUDCA-treated cells were used as the nuclear donors.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Pengxiang Qu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaonan Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Fang Qiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yefei Ma
- Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shannxi Province, PR China
| | - Suzhu Qing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
- * E-mail: (YZ); (YW); (WC)
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
- * E-mail: (YZ); (YW); (WC)
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States of America
- Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, United States of America
- * E-mail: (YZ); (YW); (WC)
| |
Collapse
|
19
|
Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress. Sci Rep 2017; 7:11114. [PMID: 28894150 PMCID: PMC5593819 DOI: 10.1038/s41598-017-11161-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/15/2017] [Indexed: 12/29/2022] Open
Abstract
Melatonin has antioxidant and scavenger effects in the cellular antioxidant system. This research investigated the protective effects and underlying mechanisms of melatonin action in porcine somatic cell nuclear transfer (SCNT) embryos. The results suggested that the developmental competence of porcine SCNT embryos was considerably enhanced after melatonin treatment. In addition, melatonin attenuated the increase in reactive oxygen species levels induced by oxidative stress, the decrease in glutathione levels, and the mitochondrial dysfunction. Importantly, melatonin inhibited phospho-histone H2A.X (γH2A.X) expression and comet tail formation, suggesting that γH2A.X prevents oxidative stress-induced DNA damage. The expression of genes involved in homologous recombination and non-homologous end-joining pathways for the repair of double-stranded breaks (DSB) was reduced upon melatonin treatment in porcine SCNT embryos at day 5 of development under oxidative stress condition. These results indicated that melatonin promoted porcine SCNT embryo development by preventing oxidative stress-induced DNA damage via quenching of free radical formation. Our results revealed a previously unrecognized regulatory effect of melatonin in response to oxidative stress and DNA damage. This evidence provides a novel mechanism for the improvement in SCNT embryo development associated with exposure to melatonin.
Collapse
|
20
|
Nguyen TV, Tanihara F, Do L, Sato Y, Taniguchi M, Takagi M, Van Nguyen T, Otoi T. Chlorogenic acid supplementation during in vitro maturation improves maturation, fertilization and developmental competence of porcine oocytes. Reprod Domest Anim 2017; 52:969-975. [PMID: 28660662 DOI: 10.1111/rda.13005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/07/2017] [Indexed: 12/19/2022]
Abstract
Chlorogenic acid (CGA) is a quinic acid conjugate of caffeic acid, and a phytochemical found in many fruits and beverages that acts as an antioxidant. The present study investigated the effects of CGA supplementation during in vitro maturation (IVM), on in vitro development of porcine oocytes, to improve the porcine in vitro production (IVP) system. Oocytes were matured either without (control) or with CGA (10, 50, 100 and 200 μM). Subsequently, the matured oocytes were fertilized and cultured in vitro for 7 day. The rates of maturation, fertilization and blastocyst formation of oocytes matured with 50 μM CGA were significantly (p < .05) higher than those of the control oocytes. Hydrogen peroxide (H2 O2 ) is one of the reactive oxygen species and induces DNA damage in porcine oocytes. When oocytes were matured with 1 mM H2 O2 to assess the protective effect of CGA, 50 μM CGA supplementation improved the maturation rate and the proportion of DNA-fragmented nuclei in oocytes compared with control oocytes matured without CGA. Moreover, when oocytes were matured with either 50 μM CGA (control) or caffeic acid (10, 50 and 100 μM), the rates of maturation, fertilization and the blastocyst formation of oocytes matured with 50 μM CGA were similar to those of oocytes matured with 10 and 50 μM caffeic acid. Our results suggest that CGA has comparable effects to caffeic acid, and IVM with 50 μM CGA is particularly beneficial to IVP of porcine embryos and protects oocytes from DNA damage induced by oxidative stress. Supplementation of CGA to the maturation medium has a potential to improve porcine IVP system.
Collapse
Affiliation(s)
- T-V Nguyen
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - F Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Ltk Do
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Y Sato
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi, Japan
| | - M Taniguchi
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - M Takagi
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - T Van Nguyen
- Faculty of Veterinary Science, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - T Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
21
|
Melatonin Scavenger Properties against Oxidative and Nitrosative Stress: Impact on Gamete Handling and In Vitro Embryo Production in Humans and Other Mammals. Int J Mol Sci 2017; 18:ijms18061119. [PMID: 28613231 PMCID: PMC5485943 DOI: 10.3390/ijms18061119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 11/17/2022] Open
Abstract
Oxidative and nitrosative stress are common problems when handling gametes in vitro. In vitro development in mammalian embryos is highly affected by culture conditions, especially by reactive oxygen species (ROS) and reactive nitrogen species (RNS), because their absence or overproduction causes embryo arrest and changes in gene expression. Melatonin in gamete co-incubation during in vitro fertilization (IVF) has deleterious or positive effects, depending on the concentration used in the culture medium, demonstrating the delicate balance between antioxidant and pro-oxidant activity. Further research is needed to better understand the possible impact of melatonin on the different IVP steps in humans and other mammals, especially in seasonal breeds where this neuro-hormone system highly regulates its reproduction physiology.
Collapse
|
22
|
Tian X, Wang F, Zhang L, Ji P, Wang J, Lv D, Li G, Chai M, Lian Z, Liu G. Melatonin Promotes the In Vitro Development of Microinjected Pronuclear Mouse Embryos via Its Anti-Oxidative and Anti-Apoptotic Effects. Int J Mol Sci 2017; 18:E988. [PMID: 28475125 PMCID: PMC5454901 DOI: 10.3390/ijms18050988] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/16/2022] Open
Abstract
CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats) combined with pronuclear microinjection has become the most effective method for producing transgenic animals. However, the relatively low embryo developmental rate limits its application. In the current study, it was observed that 10-7 M melatonin is considered an optimum concentration and significantly promoted the in vitro development of murine microinjected pronuclear embryos, as indicated by the increased blastocyst rate, hatching blastocyst rate and blastocyst cell number. When these blastocysts were implanted into recipient mice, the pregnancy rate and birth rate were significantly higher than those of the microinjected control, respectively. Mechanistic studies revealed that melatonin treatment reduced reactive oxygen species (ROS) production and cellular apoptosis during in vitro embryo development and improved the quality of the blastocysts. The implantation of quality-improved blastocysts led to elevated pregnancy and birth rates. In conclusion, the results revealed that the anti-oxidative and anti-apoptotic activities of melatonin improved the quality of microinjected pronuclear embryos and subsequently increased both the efficiency of embryo implantation and the birth rate of the pups. Therefore, the melatonin supplementation may provide a novel alternative method for generating large numbers of transgenic mice and this method can probably be used in human-assisted reproduction and genome editing.
Collapse
Affiliation(s)
- Xiuzhi Tian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Feng Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jing Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Dongying Lv
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Guangdong Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Menglong Chai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Li X, Wang YK, Song ZQ, Du ZQ, Yang CX. Dimethyl Sulfoxide Perturbs Cell Cycle Progression and Spindle Organization in Porcine Meiotic Oocytes. PLoS One 2016; 11:e0158074. [PMID: 27348312 PMCID: PMC4922549 DOI: 10.1371/journal.pone.0158074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/09/2016] [Indexed: 12/01/2022] Open
Abstract
Meiotic maturation of mammalian oocytes is a precisely orchestrated and complex process. Dimethyl sulfoxide (DMSO), a widely used solvent, drug, and cryoprotectant, is capable of disturbing asymmetric cytokinesis of oocyte meiosis in mice. However, in pigs, DMSO’s effect on oocyte meiosis still remains unknown. We aimed to evaluate if DMSO treatment will affect porcine oocyte meiosis and the underlying molecular changes as well. Interestingly, we did not observe the formation of the large first polar body and symmetric division for porcine oocytes treated with DMSO, contrary to findings reported in mice. 3% DMSO treatment could inhibit cumulus expansion, increase nuclear abnormality, disturb spindle organization, decrease reactive oxygen species level, and elevate mitochondrial membrane potential of porcine oocytes. There was no effect on germinal vesicle breakdown rate regardless of DMSO concentration. 3% DMSO treatment did not affect expression of genes involved in spindle organization (Bub1 and Mad2) and apoptosis (NF-κB, Pten, Bcl2, Caspase3 and Caspase9), however, it significantly decreased expression levels of pluripotency genes (Oct4, Sox2 and Lin28) in mature oocytes. Therefore, we demonstrated that disturbed cumulus expansion, chromosome alignment, spindle organization and pluripotency gene expression could be responsible for DMSO-induced porcine oocyte meiotic arrest and the lower capacity of subsequent embryo development. Our results provide new insights on DMSO’s effect on porcine oocyte meiosis and raise safety concerns over DMSO’s usage on female reproduction in both farm animals and humans.
Collapse
Affiliation(s)
- Xuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yan-Kui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- * E-mail: (CXY); (ZQD)
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- * E-mail: (CXY); (ZQD)
| |
Collapse
|
24
|
Rodrigues-Cunha MC, Mesquita LG, Bressan F, Collado MD, Balieiro JCC, Schwarz KRL, de Castro FC, Watanabe OY, Watanabe YF, de Alencar Coelho L, Leal CLV. Effects of melatonin during IVM in defined medium on oocyte meiosis, oxidative stress, and subsequent embryo development. Theriogenology 2016; 86:1685-94. [PMID: 27471183 DOI: 10.1016/j.theriogenology.2016.05.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/02/2016] [Accepted: 05/20/2016] [Indexed: 01/25/2023]
Abstract
Melatonin may have beneficial effects when used in oocyte maturation and embryo development culture. The effect of melatonin during IVM on meiosis resumption and progression in bovine oocytes and on expression of antioxidant enzymes, nuclear fragmentation and free radicals, as well as on embryo development were assessed. Cumulus-oocyte complexes were matured in vitro with melatonin (10(-9) and 10(-6) M), FSH (positive control), or without hormones (negative control) in defined medium. Maturation rates were evaluated at 6, 12, 18, and 24 hours. Transcripts for antioxidant enzymes (CuZnSOD, MnSOD, and glutathione peroxidase 4 (GPX4)) in oocytes and cumulus cells, nuclear fragmentation in cumulus cells (TUNEL) and reactive oxygen species levels in oocytes (carboxy-H2 difluorofluorescein diacetate) were determined at 24 hours IVM. Effect of treatments on embryo development was determined after in vitro fertilization and culture. At 12 hours, meiosis resumption rates in FSH and melatonin-treated groups were similar (69.6%-81.8%, P > 0.05). At 24 hours, most oocytes were in metaphase II, with FSH showing highest rates (90.0%, P < 0.05) compared with the other groups (51.6%-69.1%, P > 0.05). In cumulus cells, MnSOD expression was higher in FSH group (P < 0.05) whereas Cu,ZnSOD transcripts were more abundant in melatonin group (10(-6)M; P < 0.05). Nuclear fragmentation in cumulus cells was highest in controls (37.4%/10,000 cells; P < 0.05) and lower in FSH and 10(-6)M melatonin (29.4% and 25.6%/10,000 cells, respectively). Reactive oxygen species levels were lower in oocytes matured with 10(-6)M melatonin than in control and FSH groups (P < 0.05). Embryo development from oocytes matured only with melatonin was similar to those matured in complete medium (P > 0.05). In conclusion, although melatonin during IVM in a defined medium does not stimulate nuclear maturation progression it does stimulate meiosis resumption and such treated oocytes support subsequent embryo development. Melatonin also shows cytoprotective effects on cumulus-oocyte complexes.
Collapse
Affiliation(s)
| | - Lígia G Mesquita
- Departamento de Nutrição e Produção Animal, Faculdade de Medicina Veterinária e Zootecnia-USP, Pirassununga-SP, Brazil
| | - Fabiana Bressan
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos-USP, Pirassununga-SP, Brazil
| | - Maite Del Collado
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos-USP, Pirassununga-SP, Brazil
| | - Júlio C C Balieiro
- Departamento de Nutrição e Produção Animal, Faculdade de Medicina Veterinária e Zootecnia-USP, Pirassununga-SP, Brazil
| | - Kátia R L Schwarz
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos-USP, Pirassununga-SP, Brazil
| | - Fernanda C de Castro
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos-USP, Pirassununga-SP, Brazil
| | | | | | - Lia de Alencar Coelho
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos-USP, Pirassununga-SP, Brazil
| | - Cláudia L V Leal
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos-USP, Pirassununga-SP, Brazil.
| |
Collapse
|
25
|
Tao L, Yang M, Wang X, Zhang Z, Wu Z, Tian J, An L, Wang S. Efficient biallelic mutation in porcine parthenotes using a CRISPR-Cas9 system. Biochem Biophys Res Commun 2016; 476:225-229. [PMID: 27221047 DOI: 10.1016/j.bbrc.2016.05.100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 05/20/2016] [Indexed: 12/21/2022]
Abstract
The parthenotes represent ideal models mimicking the embryonic development and characterizing the function of maternal genomes as well as an alternative source of pluripotent cell lines. Besides, parthenogenetically activated (PA) embryos serve as a rapid assay system to maximize the efficiency of generating genetically modified pig CRISPR/Cas9 system, an efficient and multiplex gene editing tool, has been utilized to modify the genome of porcine parthenotes. However, lower biallelic mutation rate and high mosaicism frequency were observed. Here, we aimed to enhance the biallelic mutation rate with reduced mosaicism by optimization of the concentration and injection time of the Cas9/sgRNA mixture in porcine parthenotes. The results showed that the efficient biallelic mutation (93%) and low mosaicism (33%) could be achieved in porcine parthenotes by cytoplasmic injection of Cas9 mRNA/sgRNA (125/12.5 ng/μl) after 8 h of parthenogenetical activation. Thus, our study provides an effective strategy for increasing the biallelic mutation rate and population homogeneity of genetically modified parthenotes, which will strengthen the role of parthenotes in uncovering early embryonic development and assessing the mutation efficiency due to the simplicity and adaptability of CRISPR/Cas9.
Collapse
Affiliation(s)
- Li Tao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, No. 2 Yuan Ming Yuan Xi Lu, Haidian District, Beijing 100193, PR China
| | - Mingyao Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, No. 2 Yuan Ming Yuan Xi Lu, Haidian District, Beijing 100193, PR China
| | - Xiaodong Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, No. 2 Yuan Ming Yuan Xi Lu, Haidian District, Beijing 100193, PR China
| | - Zhenni Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, No. 2 Yuan Ming Yuan Xi Lu, Haidian District, Beijing 100193, PR China
| | - Zhonghong Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, No. 2 Yuan Ming Yuan Xi Lu, Haidian District, Beijing 100193, PR China
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, No. 2 Yuan Ming Yuan Xi Lu, Haidian District, Beijing 100193, PR China
| | - Lei An
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, No. 2 Yuan Ming Yuan Xi Lu, Haidian District, Beijing 100193, PR China.
| | - Shumin Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, No. 2 Yuan Ming Yuan Xi Lu, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
26
|
Pang YW, Sun YQ, Sun WJ, Du WH, Hao HS, Zhao SJ, Zhu HB. Melatonin inhibits paraquat-induced cell death in bovine preimplantation embryos. J Pineal Res 2016; 60:155-66. [PMID: 26607207 DOI: 10.1111/jpi.12297] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022]
Abstract
Preimplantation embryos are sensitive to oxidative stress-induced damage that can be caused by reactive oxygen species (ROS) originating from normal embryonic metabolism and/or the external surroundings. Paraquat (PQ), a commonly used pesticide and potent ROS generator, can induce embryotoxicity. The present study aimed to investigate the effects of melatonin on PQ-induced damage during embryonic development in bovine preimplantation embryos. PQ treatment significantly reduced the ability of bovine embryos to develop to the blastocyst stage, and the addition of melatonin markedly reversed the developmental failure caused by PQ (20.9% versus 14.3%). Apoptotic assay showed that melatonin pretreatment did not change the total cell number in blastocysts, but the incidence of apoptotic nuclei and the release of cytochrome c were significantly decreased. Using real-time quantitative polymerase chain reaction analysis, we found that melatonin pre-incubation significantly altered the expression levels of genes associated with redox signaling, particularly by attenuating the transcript level of Txnip and reinforcing the expression of Trx. Furthermore, melatonin pretreatment significantly reduced the expression of the pro-apoptotic caspase-3 and Bax, while the expression of the anti-apoptotic Bcl-2 and XIAP was unaffected. Western blot analysis showed that melatonin protected bovine embryos from PQ-induced damage in a p38-dependent manner, but extracellular signal-regulated kinase (ERK) and c-JUN N-terminal kinase (JNK) did not appear to be involved. Together, these results identify an underlying mechanism by which melatonin enhances the developmental potential of bovine preimplantation embryos under oxidative stress conditions.
Collapse
Affiliation(s)
- Yun-Wei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ye-Qing Sun
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei-Jun Sun
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Jiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Su J, Wang Y, Xing X, Zhang L, Sun H, Zhang Y. Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos. J Pineal Res 2015; 59:455-68. [PMID: 26331949 DOI: 10.1111/jpi.12275] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/28/2015] [Indexed: 01/08/2023]
Abstract
Somatic cell nuclear transfer (SCNT) is a promising technology, but its application is hampered by its low efficiency. Hence, the majority of SCNT embryos fail to develop to term. In this study, the antioxidant melatonin reduced apoptosis and reactive oxygen species (ROS) in bovine SCNT embryos. It also increased cell number, inner cell mass (ICM) cell numbers, and the ratio of ICM to total cells while improving the development of bovine SCNT embryos in vitro and in vivo. Gene expression analysis showed that melatonin suppressed the expression of the pro-apoptotic genes p53 and Bax and stimulated the expression of the antioxidant genes SOD1 and Gpx4, the anti-apoptotic gene BCL2L1, and the pluripotency-related gene SOX2 in SCNT blastocysts. We also analyzed the epigenetic modifications in bovine in vitro fertilization, melatonin-treated, and untreated SCNT embryos. The global H3K9ac levels of melatonin-treated SCNT embryos at the four-cell stage were higher than those of the untreated SCNT embryos. We conclude that exogenous melatonin affects the expression of genes related to apoptosis, antioxidant function, and development. Moreover, melatonin reduced apoptosis and ROS in bovine SCNT embryos and enhanced blastocyst quality, thereby ultimately improving bovine cloning efficiency.
Collapse
Affiliation(s)
- Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Lei Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Hongzheng Sun
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| |
Collapse
|
28
|
Mehaisen GMK, Saeed AM, Gad A, Abass AO, Arafa M, El-Sayed A. Antioxidant Capacity of Melatonin on Preimplantation Development of Fresh and Vitrified Rabbit Embryos: Morphological and Molecular Aspects. PLoS One 2015; 10:e0139814. [PMID: 26439391 PMCID: PMC4595475 DOI: 10.1371/journal.pone.0139814] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
Embryo cryopreservation remains an important technique to enhance the reconstitution and distribution of animal populations with high genetic merit. One of the major detrimental factors to this technique is the damage caused by oxidative stress. Melatonin is widely known as an antioxidant with multi-faceted ways to counteract the oxidative stress. In this paper, we investigated the role of melatonin in protecting rabbit embryos during preimplantation development from the potential harmful effects of oxidative stress induced by in vitro culture or vitrification. Rabbit embryos at morula stages were cultured for 2 hr with 0 or 10−3 M melatonin (C or M groups). Embryos of each group were either transferred to fresh culture media (CF and MF groups) or vitrified/devitrified (CV and MV groups), then cultured in vitro for 48 hr until the blastocyst stage. The culture media were used to measure the activity of antioxidant enzymes: glutathione-s-transferase (GST) and superoxide dismutase (SOD), as well as the levels of two oxidative substrates: lipid peroxidation (LPO) and nitric oxide (NO). The blastocysts from each group were used to measure the expression of developmental-related genes (GJA1, POU5F1 and Nanog) and oxidative-stress-response-related genes (NFE2L2, SOD1 and GPX1). The data showed that melatonin promoted significantly (P<0.05) the blastocyst rate by 17% and 12% in MF and MV groups compared to their controls (CF and CV groups). The GST and SOD activity significantly increased by the treatment of melatonin in fresh or vitrified embryos, while the levels of LPO and NO decreased (P<0.05). Additionally, melatonin considerably stimulated the relative expression of GJA1, NFE2L2 and SOD1 genes in MF and MV embryos compared to CF group. Furthermore, melatonin significantly ameliorated the reduction of POU5F1 and GPX1 expression induced by vitrification. The results obtained from the current investigation provide new and clear molecular aspects regarding the mechanisms by which melatonin promotes development of both fresh and vitrified rabbit embryos.
Collapse
Affiliation(s)
- Gamal M. K. Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- * E-mail:
| | - Ayman M. Saeed
- Department of Animal Biotechnology, Animal Production Research Institute, Dokki, Giza, Egypt
| | - Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed O. Abass
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mahmoud Arafa
- Animal Health Research Institute, Dokki, Giza, Egypt
| | - Ashraf El-Sayed
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
29
|
Tan K, An L, Wang SM, Wang XD, Zhang ZN, Miao K, Sui LL, He SZ, Nie JZ, Wu ZH, Tian JH. Actin Disorganization Plays a Vital Role in Impaired Embryonic Development of In Vitro-Produced Mouse Preimplantation Embryos. PLoS One 2015; 10:e0130382. [PMID: 26076347 PMCID: PMC4468147 DOI: 10.1371/journal.pone.0130382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/19/2015] [Indexed: 02/04/2023] Open
Abstract
Assisted reproductive technology (ART) is being increasingly applied to overcome infertility. However, the in vitro production process, the main procedure of ART, can lead to aberrant embryonic development and health-related problems in offspring. Understanding the mechanisms underlying the ART-induced side effects is important to improve the ART process. In this study, we carried out comparative transcriptome profiling between in vivo- (IVO) and in vitro- produced (IVP) mouse blastocysts. Our results suggested that aberrant actin organization might be a major factor contributing to the impaired development of IVP embryos. To test this, we examined the effect of actin disorganization on the development of IVP preimplantation embryos. Specific disruption of actin organization by cytochalasin B (CB) indicated that well-organized actin is essential for in vitro embryonic development. Supplementing the culture medium with 10–9 M melatonin, a cytoskeletal modulator in adult somatic cells, significantly reversed the disrupted expression patterns of genes related to actin organization, including Arhgef2, Bcl2, Coro2b, Flnc, and Palld. Immunofluorescence analysis showed that melatonin treatment of IVP embryos significantly improved the distribution and organization of actin filaments (F-actin) from the 8-cell stage onwards. More importantly, we found that melatonin alleviated the CB-mediated aberrant F-actin distribution and organization and rescued CB-induced impaired embryonic development. This is the first study to indicate that actin disorganization is implicated in impaired development of IVP embryos during the preimplantation stage. We also demonstrated that improving actin organization is a promising strategy to optimize existing IVP systems.
Collapse
Affiliation(s)
- Kun Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Shu-Min Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xiao-Dong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhen-Ni Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Kai Miao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Lin-Lin Sui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Shu-Zhi He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jing-Zhou Nie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhong-Hong Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jian-Hui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
30
|
Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. BIOMED RESEARCH INTERNATIONAL 2015; 2015:814686. [PMID: 25866813 PMCID: PMC4381569 DOI: 10.1155/2015/814686] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/21/2015] [Indexed: 12/23/2022]
Abstract
The current research was conducted to explore the in vitro developmental outcome and cytological/molecular quality of porcine nuclear-transferred (NT) embryos reconstituted with adult bone marrow-derived mesenchymal stem cells (ABM-MSCs) that were epigenetically transformed by treatment with nonspecific inhibitor of histone deacetylases, known as trichostatin A (TSA). The cytological quality of cloned blastocysts was assessed by estimation of the total cells number (TCN) and apoptotic index. Their molecular quality was evaluated by real-time PCR-mediated quantification of gene transcripts for pluripotency- and multipotent stemness-related markers (Oct4, Nanog, and Nestin). The morula and blastocyst formation rates of NT embryos derived from ABM-MSCs undergoing TSA treatment were significantly higher than in the TSA-unexposed group. Moreover, the NT blastocysts generated using TSA-treated ABM-MSCs exhibited significantly higher TCN and increased pluripotency extent measured with relative abundance of Oct4 and Nanog mRNAs as compared to the TSA-untreated group. Altogether, the improvements in morula/blastocyst yields and quality of cloned pig embryos seem to arise from enhanced abilities for promotion of correct epigenetic reprogramming of TSA-exposed ABM-MSC nuclei in a cytoplasm of reconstructed oocytes. To our knowledge, we are the first to report the successful production of mammalian high-quality NT blastocysts using TSA-dependent epigenomic modulation of ABM-MSCs.
Collapse
|
31
|
Wang F, Tian X, Zhang L, Tan D, Reiter RJ, Liu G. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J Pineal Res 2013; 55:267-74. [PMID: 23772689 DOI: 10.1111/jpi.12069] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 01/10/2023]
Abstract
When a defect occurs in the in vitro development of a pronuclear embryo, the interruption of the subsequent implantation limits the success of assisted conception. This common problem remains to be solved. In this study, we observed that melatonin at its physiological concentration (10(-7) m) significantly promoted the in vitro development of murine pronuclear embryos. This was indicated by the increased blastocyst rate, hatching blastocyst rate, and blastocyst cell number with melatonin treatment. In addition, when these blastocysts were implanted into female recipient mice, the pregnancy rates (95.0% versus control 67.8%), litter sizes (4.1 pups/litter versus control 2.7 pups/litter), and postnatal survival rates of offspring (96.84% versus control 81.24%) were significantly improved compared with their non-melatonin-treated counterparts. Mechanistic studies revealed that melatonin treatment upregulates gene expression of the antioxidant enzyme, superoxide dismutase (SOD), and the anti-apoptotic factor bcl-2 while downregulating the expression of pro-apoptotic genes p53 and caspase-3. Due to these changes, melatonin treatment reduces ROS production and cellular apoptosis during in vitro embryo development and improves the quality of blastocysts. The implantation of blastocysts with higher quality leads to more healthy offspring and increased pup survival.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
32
|
In vitro development rate of preimplantation rabbit embryos cultured with different levels of melatonin. ZYGOTE 2013; 23:111-5. [PMID: 23985360 DOI: 10.1017/s0967199413000415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the effect of melatonin supplementation at different levels in culture medium on embryo development in rabbits. Embryos of 2-4 cells, 8-16 cells and morula stages were recovered from nulliparous Red Baladi rabbit does by laparotomy technique 24, 48 and 72 h post-insemination, respectively. Normal embryos from each stage were cultured to hatched blastocyst stages in either control culture medium (TCM-199 + 20% fetal bovine serum) or control supplemented with melatonin at 10(-3) M, 10(-6) M or 10(-9) M. No effect of melatonin was found on development of embryos recovered at 24 h post-insemination. The high level of melatonin at 10(-3) M adversely affected the in vitro development rates of embryos recovered at 48 h post-insemination (52 versus 86, 87 and 80% blastocyst rate; 28 versus 66, 78 and 59% hatchability rate for 10(-3) M versus 10(-9) M, 10(-6) M and control, respectively, P< 0.05). At the morula stage, melatonin at 10-3 M significantly increased the in vitro development of embryos (92% for 10(-3) M versus 76% for control, P < 0.05), while the hatchability rate of these embryos was not improved by melatonin (16-30% versus 52% for melatonin groups versus control, P < 0.05). Results show that a moderate level of melatonin (10(-6) M) may improve the development and hatchability rates of preimplantation rabbit embryos. The addition of melatonin at a 10-3 M concentration enhances the development of rabbit morulae but may negatively affect the development of earlier embryos. More studies are needed to optimize the use of melatonin in in vitro embryo culture in rabbits.
Collapse
|