1
|
Tagliatti E, Bizzotto M, Morini R, Filipello F, Rasile M, Matteoli M. Prenatal drivers of microglia vulnerability in the adult. Immunol Rev 2024. [PMID: 39508795 DOI: 10.1111/imr.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Environmental insults during early development heavily affect brain trajectories. Among these, maternal infections, high-fat diet regimens, and sleep disturbances pose a significant risk for neurodevelopmental derangements in the offspring. Notably, scattered evidence is starting to emerge that also paternal lifestyle habits may impact the offspring development. Given their key role in controlling neurogenesis, synaptogenesis and shaping neuronal circuits, microglia represent the most likely suspects of mediating the detrimental effects of prenatal insults. For some of these environmental triggers, like maternal infections, ample literature evidence demonstrates the central role of microglia, also delineating the specific transcriptomic and proteomic profiles induced by these insults. In other contexts, the analysis of microglia is still in its infancy. Fostering these studies is needed to define microglia as potential therapeutic target in the frame of disorders consequent to maternal immune activation.
Collapse
Affiliation(s)
| | | | | | | | - Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
2
|
Wang L, Tian H, Wang H, Mao X, Luo J, He Q, Wen P, Cao H, Fang L, Zhou Y, Yang J, Jiang L. Disrupting circadian control of autophagy induces podocyte injury and proteinuria. Kidney Int 2024; 105:1020-1034. [PMID: 38387504 DOI: 10.1016/j.kint.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
The circadian clock influences a wide range of biological process and controls numerous aspects of physiology to adapt to the daily environmental changes caused by Earth's rotation. The kidney clock plays an important role in maintaining tubular function, but its effect on podocytes remains unclear. Here, we found that podocytes expressed CLOCK proteins, and that 2666 glomerular gene transcripts (13.4%), including autophagy related genes, had 24-hour circadian rhythms. Deletion of Clock in podocytes resulted in 1666 gene transcripts with the loss of circadian rhythm including autophagy genes. Podocyte-specific Clock knockout mice at age three and eight months showed deficient autophagy, loss of podocytes and increased albuminuria. Chromatin immunoprecipitation (ChIP) sequence analysis indicated autophagy related genes were targets of CLOCK in podocytes. ChIP-PCR further confirmed Clock binding to the promoter regions of Becn1 and Atg12, two autophagy related genes. Furthermore, the association of CLOCK regulated autophagy with chronic sleep fragmentation and diabetic kidney disease was analyzed. Chronic sleep fragmentation resulted in the loss of glomerular Clock rhythm, inhibition of podocyte autophagy, and proteinuria. Rhythmic oscillations of Clock also disappeared in high glucose treated podocytes and in glomeruli from diabetic mice. Finally, circadian differences in podocyte autophagy were also abolished in diabetic mice. Deletion Clock in podocytes aggravated podocyte injury and proteinuria in diabetic mice. Thus, our findings demonstrate that clock-dependent regulation of autophagy may be essential for podocyte survival. Hence. loss of circadian controlled autophagy may play an important role in podocyte injury and proteinuria.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Han Tian
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Wang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Mao
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Luo
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingyun He
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Wen
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongdi Cao
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Fang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Yang Zhou
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Junwei Yang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Lei Jiang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Wang X, Li Y, Wang X, Wang R, Hao Y, Ren F, Wang P, Fang B. Faecalibacterium prausnitzii Supplementation Prevents Intestinal Barrier Injury and Gut Microflora Dysbiosis Induced by Sleep Deprivation. Nutrients 2024; 16:1100. [PMID: 38674791 PMCID: PMC11054126 DOI: 10.3390/nu16081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Sleep deprivation (SD) leads to impaired intestinal barrier function and intestinal flora disorder, especially a reduction in the abundance of the next generation of probiotic Faecalibacterium prausnitzii (F. prausnitzii). However, it remains largely unclear whether F. prausnitzii can ameliorate SD-induced intestinal barrier damage. A 72 h SD mouse model was used in this research, with or without the addition of F. prausnitzii. The findings indicated that pre-colonization with F. prausnitzii could protect against tissue damage from SD, enhance goblet cell count and MUC2 levels in the colon, boost tight-junction protein expression, decrease macrophage infiltration, suppress pro-inflammatory cytokine expression, and reduce apoptosis. We found that the presence of F. prausnitzii helped to balance the gut microbiota in SD mice by reducing harmful bacteria like Klebsiella and Staphylococcus, while increasing beneficial bacteria such as Akkermansia. Ion chromatography analysis revealed that F. prausnitzii pretreatment increased the fecal butyrate level in SD mice. Overall, these results suggested that incorporating F. prausnitzii could help reduce gut damage caused by SD, potentially by enhancing the intestinal barrier and balancing gut microflora. This provides a foundation for utilizing probiotics to protect against intestinal illnesses.
Collapse
Affiliation(s)
- Xintong Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA;
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| |
Collapse
|