1
|
Calik A, Emami NK, White MB, Dalloul RA. Performance, fatty acid composition, and liver fatty acid metabolism markers of broilers fed genetically modified soybean DP-3Ø5423-1. Poult Sci 2024; 103:103470. [PMID: 38301495 PMCID: PMC10846397 DOI: 10.1016/j.psj.2024.103470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Several genetically modified (GM) plants have been produced and approved by regulatory agencies worldwide for cultivation and commercialization. Soybean and its by-products are major components of poultry diets and approximately 74% of world production is obtained from GM soybean events. The aim of this study was to evaluate the nutrient composition of DP-3Ø5423-1 extruded full-fat soybean meal (FFSBM) and near isoline non-GM control FFSBM included in broiler diets. Also assessed were their effects on bird performance, body composition, intestinal morphology, tissue fatty acid profile, and mRNA abundance of fatty acid metabolism markers. A total of 480 Ross 308 d of hatch birds were randomly allocated to 24 floor pens in a 2 × 2 factorial arrangement with diet and gender as main factors. Birds were fed diets containing 20% of either DP-3Ø5423-1 or control FFSBM for 35 d. Data were subjected to a 2-way ANOVA using the GLM procedure of JMP (Pro13). No significant interaction (P > 0.05) was observed between treatment groups in terms of performance and carcass composition. Morphological measurements of the jejunum and ileum were not influenced by the SBM treatments. Dietary addition of the DP-3Ø5423-1 FFSBM resulted in higher monounsaturated fatty acid composition of the thigh muscle and abdominal fat. Moreover, dietary treatment had no significant impact on the mRNA abundance of metabolic markers ACCα, FAS, MTTP, SREBP1, PPARα, PPARγ, AMPK-α1, SOD, CAT, and GPx in the liver. In conclusion, our results showed that DP-3Ø5423-1 extruded FFSBM is nutritionally equivalent to non-GM near-isoline counterpart with a comparable genetic background as evidenced by feed analyses except for fatty acid composition. Furthermore, the findings of this study clearly indicate that the examined DP-3Ø5423-1 FFSBM yields similar bird performance as conventional FFSBM.
Collapse
Affiliation(s)
- Ali Calik
- Department of Poultry Science, Avian Immunobiology Laboratory, University of Georgia, Athens, GA 30602, USA; Department of Animal Nutrition & Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Turkey
| | - Nima K Emami
- Department of Poultry Science, Avian Immunobiology Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Mallory B White
- School of STEM, Virginia Western Community College, Roanoke, VA 24015, USA
| | - Rami A Dalloul
- Department of Poultry Science, Avian Immunobiology Laboratory, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Ge C, Luo X, Wu L, Lv Y, Hu Z, Yu D, Liu B. Plant essential oils improve growth performance by increasing antioxidative capacity, enhancing intestinal barrier function, and modulating gut microbiota in Muscovy ducks. Poult Sci 2023; 102:102813. [PMID: 37343349 PMCID: PMC10404791 DOI: 10.1016/j.psj.2023.102813] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Essential oils (EO) are known for their antioxidant, anti-inflammatory, antimicrobial, and growth-promoting properties. However, data rgarding their impact on the intestinal health and gut microbiota of ducks remain limited. Thus, this study aimed to investigate the effects of plant EO on the growth performance, intestinal health, and gut microbiota of Muscovy ducks. A total of 360 healthy male Muscovy ducks aged 1 d were randomly divided into 4 groups with 6 replicates and 15 ducks per replicate. Ducks were fed basal diets supplemented with 0, 100, 200, or 300 mg/kg EO. The results showed that 200 mg/kg EO supplementation significantly (P < 0.05) increased the final body weight and average daily gain, while significantly (P < 0.05) decreased the feed conversion ratio during the 56-d experimental period. Furthermore, dietary 200 mg/kg EO significantly (P < 0.05) enhanced antioxidant capacity and immune function and improved the barrier function of the intestine. Additionally, 16S rDNA sequencing analysis results showed that 200 mg/kg EO favorably modulated the cecal microbial diversities and composition evidenced by the increased (P < 0.05) the abundances of short-chain fatty acid-producing bacteria (e.g., Subdoligranulum and Shuttleworthia) and decreased (P < 0.05) abundances of potential enteric pathogenic bacteria (e.g., Alistipes, Eisenbergiella, and Olsenella). The relative abundance of beneficial bacteria was positively correlated with antioxidant, immune, and barrier function biomarkers. Overall, these findings revealed that dietary supplementation with 200 mg/kg EO had several potentially beneficial effects on the growth performance of Muscovy ducks by improving antioxidant capacity, enhancing the intestinal barrier function and favorably modulating gut microbiota.
Collapse
Affiliation(s)
- Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China.
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Wu Y, Long XM, Liu GF, Bai X, Sun ZL, Liu ZY. The multicomponent residue depletion of Gelsemium elegans in pig tissues, urine, and plasma. Front Vet Sci 2023; 9:1111782. [PMID: 36713860 PMCID: PMC9880259 DOI: 10.3389/fvets.2022.1111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Gelsemium elegans (G. elegans) as a traditional medicinal plant used in livestock production. The use of G. elegans in veterinary clinics may pose safety risks to human health. Objectives The aim of this study was to investigate tissue residue depletion in pigs fed G. elegans powder. Methods A precise quantitation method and a simultaneous semi-quantitation method for multiple components independently of standards in pig tissues were developed for the first time. The two methods were validated in terms of specificity, LODs, LOQs, linearity, accuracy, precision, and matrix effects. They were then applied to a tissue residue depletion study after G. elegans powder at a dose of 2% per kg feed were fed to pigs. Results Compared with precise quantitation, the method validation results indicated that the semi-quantitation method was reliable and acceptable for multicomponent quantification independent of standards. Many G. elegans alkaloids are widely distributed in most tissues of pigs. Tissue residue depletion studies indicated that 14-hydroxygelsenicine, 11-hydroxygelsenicine, and gelsemoxonine could be used as potential residue markers, and pancreas, small intestine, and lung tissues could be considered as potential residue target tissues of G. elegans. In addition, both urine and plasma could be used to predict 14-hydroxygelsenicine and gelsemoxonine residues in the liver, pancreas, and small intestinal tissues of pigs. Conclusion The developed semi-quantification method can be applied to monitor the application and residue of G. elegans. The results provide scientific evidence for evaluating the safety of animal-derived food from G. elegans for consumers and will be helpful for its application and future development.
Collapse
Affiliation(s)
- Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Xue-Ming Long
- Hunan Provincial Institute of Veterinary Drugs and Feed Control, Changsha, Hunan, China
| | - Gao-Feng Liu
- Hunan Canzoho Biological Technology Co., Ltd., Liuyang, Hunan, China
| | - Xia Bai
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China,*Correspondence: Zhi-Liang Sun ✉
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China,Zhao-Ying Liu ✉
| |
Collapse
|
4
|
Age and sex related changes in fattening performance, dermatitis, intestinal histomorphology, and serum IgG level of slow- and fast-growing broilers under the intensive system. Trop Anim Health Prod 2022; 54:312. [PMID: 36131169 DOI: 10.1007/s11250-022-03315-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Due to consumers' concerns about broiler welfare, slow-growing broilers (SGB) have also been used in production. Fast-growing broilers (FGB) reach slaughter weight earlier the slow growing. This study was aimed to determine the sex-related changes in fattening performance, dermatitis, intestinal histomorphology, and serum IgG level of SGB and FGB under the intensive system during the 10 weeks. A total of 336 one-day-old broilers were distributed into four equal groups (FGB-female, FGB-male, SGB-female, and SGB-male) consisting of a 2 × 2 factorial design. The main factors were genotype (FGB and SGB) and sex (female and male). Each treatment had 6 duplicates consisting of 14 broilers. They were placed on the litter pens. The experiment lasted 10 weeks. The body weight, body weight gain, feed consumption, and feed-to-gain ratio were determined weekly during the experiment. One broiler close to the average body weight from each pen (6 broilers in the group) has been slaughtered each week and intestinal histomorphology was determined. Additionally, IgG levels in the blood and dermatitis were determined. While the period in which the body weight gain was the highest in the FGB was up to 6 week of age, this period lasted until the 7 week of age in the SGB (P < 0.001). It has been determined that FGB have the best feed efficiency ability during both 6 weeks of fattening period and 10 weeks of fattening period (P < 0.001). The difference between the sex in terms of the feed efficiency appeared after the age of 4 weeks and this difference continued until the age of 9 weeks (P < 0.01). It was determined that villus height, crypt depth, and the ratio of villus height to crypt depth in the jejunum region were higher in FGB from the age of 1 week than in SGB (P < 0.05). It was observed that the incidence of dermatitis increased in the FGB (P < 0.001). It has been determined that the genotype (P < 0.01) and period (P < 0.001) were effective according to the IgG level. These results indicate that 7 and 8 weeks can be considered important periods in terms of economic efficiency in SGB and FGB reared for 10 weeks under the same management systems and it was observed that both genotypes would be more susceptible to diseases at the age of 6 weeks.
Collapse
|
5
|
Pascual A, Pauletto M, Trocino A, Birolo M, Dacasto M, Giantin M, Bordignon F, Ballarin C, Bortoletti M, Pillan G, Xiccato G. Effect of the dietary supplementation with extracts of chestnut wood and grape pomace on performance and jejunum response in female and male broiler chickens at different ages. J Anim Sci Biotechnol 2022; 13:102. [PMID: 35978386 PMCID: PMC9387010 DOI: 10.1186/s40104-022-00736-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recently, interest in the use of herbs and phytogenic compounds has grown because of their potential role in the production and health of livestock animals. Among these compounds, several tannins have been tested in poultry, but those from chestnut wood and grape-industry byproducts have attracted remarkable interest. Thus, the present study aimed to gain further insights into the mechanisms involved in the response to the dietary supplementation with extracts of chestnut wood or grape pomace. To this purpose, 864 broiler chickens were fed a control diet (C) or the same diet supplemented 0.2% chestnut wood (CN) extract or 0.2% grape pomace (GP) extract from hatching until commercial slaughtering (at 45 days of age) to assess their effects on performance, meat quality, jejunum immune response and whole-transcriptome profiling in both sexes at different ages (15 and 35 d). RESULTS Final live weight and daily weight gain significantly increased (P < 0.01) in chickens fed GP diets compared to CN and C diets. The villi height was lower in chickens fed the CN diet than in those fed the C diet (P < 0.001); moreover, a lower density of CD45+ cells was observed in chickens fed the CN diet (P < 0.05) compared to those fed the C and GP diets. Genes involved in either pro- or anti-inflammatory response pathways, and antimicrobial and antioxidant responses were affected by GP and CN diets. There was no effect of the dietary treatment on meat quality. Regarding sex, in addition to a lower growth performance, females showed a lower occurrence of wooden breast (16.7% vs. 55.6%; P < 0.001) and a higher occurrence of spaghetti meat (48.6% vs. 4.17%; P < 0.001) in pectoralis major muscles after slaughtering than those in males. Based on the results of whole-transcriptome profiling, a significant activation of some molecular pathways related to immunity was observed in males compared with those of females. CONCLUSIONS The GP supplementation improved chicken performance and promoted immune responses in the intestinal mucosa; moreover, age and sex were associated with the most relevant transcriptional changes.
Collapse
Affiliation(s)
- A Pascual
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Pauletto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - A Trocino
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy.
| | - M Birolo
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Dacasto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Giantin
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - F Bordignon
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - C Ballarin
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Bortoletti
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - G Pillan
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - G Xiccato
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| |
Collapse
|
6
|
Liebl M, Gierus M, Potthast C, Schedle K. Influence of Insoluble Dietary Fibre on Expression of Pro-Inflammatory Marker Genes in Caecum, Ileal Morphology, Performance, and Foot Pad Dermatitis in Broiler. Animals (Basel) 2022; 12:ani12162069. [PMID: 36009659 PMCID: PMC9404941 DOI: 10.3390/ani12162069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
In a low-fibre diet destined for broilers, the effects of two lignocellulose products and soybean hulls were evaluated regarding their effect on ileal morphometric parameters, caecal gene expression, foot pad dermatitis, and performance. A total of 5040-day-old broilers (Ross 308) were allotted to four treatments and fattened for 36 days applying a three-phase feeding program. The control diet consisted of corn, wheat, and soybean meal. Experimental diets were supplemented with 0.8% lignocellulose product 1, 0.8% lignocellulose product 2, or 1.6% soybean hulls. Tissue samples for caecal expression of inflammation-related genes and ileal morphometries were collected on day 21. Gizzard pH and weights were recorded, and foot pad scores were evaluated at day of slaughter (day 36). In starter (day 1−10) and finisher phase (day 28−36), no effect on the performance was observed. In grower phase (day 11−27), fibre-supplemented diets showed significantly heavier body weights and daily weight gains (p < 0.05). Daily feed intake, feed conversion ratio, and gene expression analysis were unaffected by dietary fibre supplementation. Positive effects regarding ileal morphometrics (higher villi) and foot pad health occurred in fibre-supplemented diets. In conclusion, fibre supplementation improved performance in grower phase and showed beneficial effects regarding ileal morphology and foot pad dermatitis.
Collapse
Affiliation(s)
- Mariella Liebl
- FFoQSI GmbH, Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products and Nutrition Physiology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Martin Gierus
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products and Nutrition Physiology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria
| | | | - Karl Schedle
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products and Nutrition Physiology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria
- Correspondence:
| |
Collapse
|
7
|
Bajagai YS, Petranyi F, J Yu S, Lobo E, Batacan R, Kayal A, Horyanto D, Ren X, M Whitton M, Stanley D. Phytogenic supplement containing menthol, carvacrol and carvone ameliorates gut microbiota and production performance of commercial layers. Sci Rep 2022; 12:11033. [PMID: 35773309 PMCID: PMC9246849 DOI: 10.1038/s41598-022-14925-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Consumer push towards open and free-range production systems makes biosecurity on farms challenging, leading to increased disease and animal welfare issues. Phytogenic products are increasingly becoming a viable alternative for the use of antibiotics in livestock production. Here we present a study of the effects of commercial phytogenic supplement containing menthol, carvacrol and carvone on intestinal microbiota of layer hens, microbial functional capacity, and intestinal morphology. A total of 40,000 pullets were randomly assigned to two sides of the experimental shed. Growth performance, mortality, egg production and egg quality parameters were recorded throughout the trial period (18–30 weeks of age). Microbial community was investigated using 16S amplicon sequencing and functional difference using metagenomic sequencing. Phytogen supplemented birds had lower mortality and number of dirty eggs, and their microbial communities showed reduced richness. Although phytogen showed the ability to control the range of poultry pathogens, its action was not restricted to pathogenic taxa, and it involved functional remodelling the intestinal community towards increased cofactor production, heterolactic fermentation and salvage and recycling of metabolites. The phytogen did not alter the antimicrobial resistance profile or the number of antibiotic resistance genes. The study indicates that phytogenic supplementation can mimic the action of antibiotics in altering the gut microbiota and be used as their alternative in industry-scale layer production.
Collapse
Affiliation(s)
- Yadav S Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Friedrich Petranyi
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Sung J Yu
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Edina Lobo
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Romeo Batacan
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Advait Kayal
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Darwin Horyanto
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Xipeng Ren
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Maria M Whitton
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia.
| |
Collapse
|
8
|
Lyte JM, Martinez DA, Robinson K, Donoghue AM, Daniels KM, Lyte M. A neurochemical biogeography of the broiler chicken intestinal tract. Poult Sci 2022; 101:101671. [PMID: 35066383 PMCID: PMC8783147 DOI: 10.1016/j.psj.2021.101671] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/20/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023] Open
Abstract
The study of neurochemical-based interkingdom signaling and its impact on host-microbe interaction is called microbial endocrinology. Neurochemicals play a recognized role in determining bacterial colonization and interaction with the gut epithelium. While much attention has been devoted to the determination of neurochemical concentrations in the mammalian gut to better understand tissue and region-specific microbial endocrinology-based mechanisms of host-microbe interaction, little is known regarding the biogeography of neurochemicals in the avian gut. Greater resolution of avian gut neurochemical concentrations is needed especially as recent microbial endocrinology-based investigations into bacterial foodborne pathogen colonization of the chicken gut have demonstrated neurochemicals to affect Campylobacter jejuni and Salmonella spp. in vivo and in vitro. The aim of the present study was to determine the concentrations of stress-related neurochemicals in the tissue and luminal content of the duodenum, jejunum, ileum, cecum, and colon of the broiler intestinal tract, and to investigate if this biogeography changes with age of the bird. While all neurochemicals measured were detected in the intestinal tract, many displayed differences in regional concentrations. Whereas the catecholamine norepinephrine was detected in each region of the intestinal tract, epinephrine was present only in the cecum and colon. Likewise, dopamine, and its metabolite 3,4-dihydroxyphenylacetic acid were found in the greatest quantities in the cecum and colon. Serotonin and histamine were identified in each gut region. Region-specific age-related changes were observed (P < 0.05) for serotonin, its metabolite 5-hydroxyindole acetic acid as well as for histamine. Several neurochemicals, including norepinephrine, were found in the contents of each gut region. Epinephrine was not detected in the gut content of any region. Salsolinol, a microbial-produced neuroactive compound was detected in the gut content but not in tissue. Together, our data establish a neurochemical biogeography of the broiler chicken intestinal tract. By providing researchers with a region-by-region map of in vivo gut neurochemical concentrations of a modern broiler chicken breed, this neurochemical map is expected to inform future investigations that seek to utilize avian enteric neurochemistry.
Collapse
|
9
|
Interaction of Soybean Varieties and Heat Treatments and Its Effect on Growth Performance and Nutrient Digestibility in Broiler Chickens. Animals (Basel) 2021; 11:ani11092668. [PMID: 34573634 PMCID: PMC8471082 DOI: 10.3390/ani11092668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Soybeans are the major source of protein in today´s livestock diets. However, European soybean imports are under criticism because of environmental issues. Therefore, production of European soybeans is expected to grow. To ensure optimal feeding properties, soybeans require a heating process to eliminate intrinsic compounds interfering negatively with the animal’s digestive tract. A heating process might have different effects on different soybean varieties. Therefore, two different soybean varieties were treated at two different heat intensities in the present study—110 °C and 120 °C. The results showed, that while both heat intensities had a sufficient deactivating effect in one variety, the other variety was not treated sufficiently at 110 °C. Insufficient heat treatment was expressed in lower weight gains and lower feed intake. No negative effect of heat treatment at 120 °C was observed for growth performance, but amino acid digestibility was reduced. The present study shows that the optimal processing conditions can vary for different soybean varieties, which has to be considered especially when handling small and heterogeneous soybean batches. Abstract As production of European soybeans is expected to grow, optimal processing conditions need to be ensured for small and heterogeneous batches of soybeans. The effect of different soybean varieties, as well as heat treatments, on the growth performance and nutrient digestibility in broiler chickens was investigated. Two varieties, regarded as heat stable and heat labile after preliminary experiments, were partially de-oiled and thermally processed at 110 °C for 20 min and 120 °C for 20 min. The resulting soybean cakes were integrated into a mash diet and subjected to a 36-day long feeding experiment. A total of 336 one-day-old broiler chickens were divided into 24 pens, resulting in 6 replicates per treatment. With application of the 110 °C treatment, analysis of soybean cakes showed that the commonly required reduction in trypsin inhibitor activity (TIA) was only reached with one soybean variety. The higher processing temperature of 120 °C ensured sufficient TIA reductions in both soybean varieties. Elevated TIA concentrations resulted in decreased growth performances (p < 0.05) of the chickens, whereas no negative effect from overheating on growth performance appeared. Total-tract nitrogen retention (p < 0.05) and pre-caecal digestibility of several amino acids (p < 0.10) decreased with higher processing temperatures but had no negative effects on growth performance. In conclusion, the results indicate that processing conditions adjusted to the different varieties are essential to ensure optimal product quality.
Collapse
|
10
|
Irawan A, Hidayat C, Jayanegara A, Ratriyanto A. Essential oils as growth-promoting additives on performance, nutrient digestibility, cecal microbes, and serum metabolites of broiler chickens: a meta-analysis. Anim Biosci 2020; 34:1499-1513. [PMID: 33332937 PMCID: PMC8495342 DOI: 10.5713/ab.20.0668] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/11/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The purpose of this meta-analysis was to evaluate the effect of dietary essential oils (EOs) on productive performance, nutrient digestibility, and serum metabolite profiles of broiler chickens and to compare their effectiveness as growth-promoting additives against antibiotics. METHODS Peer-reviewed articles were retrieved from Web of Science, Science Direct, PubMed, and Google scholar and selected based on pre-determined criteria. A total of 41 articles containing 55 experiments with 163 treatment units were eligible for analyses. Data were subjected to a meta-analysis based on mixed model methodology considering the doses of EOs as fixed effects and the different studies as random effects. RESULTS Results showed a linear increase (p<0.001) on body weight gain (BWG) where Antibiotics (FCR) and average daily feed intake decreased (p<0.001) linearly with an increasing dose of EOs. Positive effects were observed on the increased (p<0.01) digestibility of dry matter, crude protein, ether extract, and cecal Lactobacillus while Escherichia coli (E. coli) population in the cecum decreased (p<0.001) linearly. There was a quadratic effect on the weight of gizzard (p<0.01), spleen (p<0.05), bursa of fabricius (p<0.001), and liver (p< 0.10) while carcass, abdominal fat, and pancreas increased (p<0.01) linearly. The dose of EOs linearly increased high density lipoprotein, glucose, protein, and globulin concentrations (p<0.01). In comparison to control and antibiotics, all type of EOs significantly reduced (p<0.001) FCR and tended to increase (p<0.1) BWG and final body weight. Cinnamaldehyde-compound was the only EOs type showing a tendency to increase (p<0.1) carcass weight, albumin, and protein of serum metabolites while this EOs together with EOs-Blend 1 decreased (p<0.01) E. coli population. Low density lipoprotein concentration decreased (p<0.05) with antibiotics and carvacrol-based compound when compared to the control group. CONCLUSION This evidence confirms that EOs are suitable to be used as growth promoters and their economical benefit appears to be promising.
Collapse
Affiliation(s)
- Agung Irawan
- Vocational Program in Animal Husbandry, Vocational School, Universitas Sebelas Maret, Surakarta 57126, Indonesia.,Animal Feed and Nutrition Modelling Research Group (AFENUE), Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Cecep Hidayat
- Animal Feed and Nutrition Modelling Research Group (AFENUE), Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia.,Indonesian Research Institute for Animal Production, Ciawi Bogor 16720, Indonesia
| | - Anuraga Jayanegara
- Animal Feed and Nutrition Modelling Research Group (AFENUE), Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia.,Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Adi Ratriyanto
- Department of Animal Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| |
Collapse
|
11
|
Azzam MM, Qaid MM, Al-Mufarrej SI, Al-Garadi MA, Albaadani HH, Alhidary IA. Rumex nervosus leaves meal improves body weight gain, duodenal morphology, serum thyroid hormones, and cecal microflora of broiler chickens during the starter period. Poult Sci 2020; 99:5572-5581. [PMID: 33142474 PMCID: PMC7647857 DOI: 10.1016/j.psj.2020.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/16/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
A total of 192 one-day-old Ross 308 broiler chicks were assigned to 4 treatments with 8 replicate cages of 6 chicks (3♀ and 3♂) per cage according to a completely randomized block design. The dietary treatments were a basal diet (control) and a control diet supplemented with 1,000, 3,000, and 5,000 mg/kg Rumex nervosus leaves meal (RN). Gallic acid and some volatile compounds were detected in the RN extract. On day 10 of age, BW was improved (P = 0.016) with supplemental RN (1,000-5,000 mg/kg). On day 14 of age, dietary application of RN up to 3,000 mg/kg increased BWG (P = 0.003) compared with control, while a 1,000 mg/kg RN had the best feed conversion ratio (P = 0.016). On day 10 of age, samples were taken on a single female bird per replicate. The addition of RN (1,000-5,000 mg/kg) increased (P < 0.001) serum albumin and triiodothyronine levels and maximized the relative weight of breast meat (P = 0.003). Feeding a diet with 1,000 mg/kg RN resulted in greater duodenal villus height (P < 0.001) than control and the diet with 5,000 mg/kg RN. Broilers fed diet supplemented with 1,000 mg/kg RN had the best duodenal villus surface area (P < 0.001). Feeding a diet with 1,000 mg/kg RN decreased (P < 0.001) cecal Escherichia coli count compared with control and the diet with 5,000 mg/kg RN. Salmonella spp. count tended to increase with 5,000 mg/kg RN leaves meal (P = 0.069, linear P = 0.026). In conclusion, R. nervosus leaves meal could be considered as a phytogenic feed additive in broiler diets up to a 1,000-mg/kg inclusion rate because of its combined positive effects on BWG, feed conversion ratio, villus height, villus surface area, serum albumin and triiodothyronine hormone, and cecal E. coli during the starter period (day 10-14 of age). Further study is required to elucidate its molecular mechanism.
Collapse
Affiliation(s)
- Mahmoud M Azzam
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; Poultry Production Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt.
| | - Mohammed M Qaid
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saud I Al-Mufarrej
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maged A Al-Garadi
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hani H Albaadani
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Alhidary
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
A diet containing native or fermented wheat bran does not interfere with natural microbiota of laying hens. Animal 2020; 14:1147-1155. [PMID: 31937375 DOI: 10.1017/s1751731119003343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Wheat bran (WB) is an important side product of the milling industry and can serve as dietary fiber compound for monogastric animals. The aim of this study was to evaluate the influence of native or fermented WB on the gut physiology and microbiology of laying hens. To accomplish this, 24 laying hens were fed the following diets: conventional diet without WB; 15% native WB in the diet; 15% WB fermented with Pleurotus eryngii; and 15% WB fermented with P. eryngii and a lactic acid bacterial culture. Immediately after slaughtering, digesta samples were taken from the jejunum, ileum and cecum, respectively. Total DNA was extracted and subsequently investigated with 16S DNA amplicon sequencing. Neither native nor fermented WB supplementations negatively affected the feed conversion ratio, laying performance or the relative abundances and alpha-diversity of microbiota in the intestine. Effects of WB-based diets on gut morphology were only recognized in the jejunum (reduced villum height and mucosa thickness). Likewise, WB supplementation decreased the digestibility of DM and starch. Based on these findings, it was demonstrated that different WB variants are applicable without exerting practically negative consequences on performance or on gut microbiota. Fermentation improved the digestibility/retention of dietary fat and phosphorus. However, no further beneficial effects were observed. This study also allowed a more in-depth view on the laying hens' gut microbiome and its variation within the gut segments.
Collapse
|
13
|
Abd El-Hack ME, Samak DH, Noreldin AE, El-Naggar K, Abdo M. Probiotics and plant-derived compounds as eco-friendly agents to inhibit microbial toxins in poultry feed: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31971-31986. [PMID: 30229484 DOI: 10.1007/s11356-018-3197-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Some of pathogenic bacteria and fungi have the ability to produce fetal toxins which may be the direct causes of cytotoxicity or cellular dysfunction in the colonization site. Biological and non-biological environmental factors, challenge and microbes influence the effect of toxins on these pathogens. Modern research mentions that many natural materials can reduce the production of toxins in pathogenic microbes. However, researches that explain the mechanical theories of their effects are meager. This review aimed to discuss the ameliorative potential role of plant-derived compounds and probiotics to reduce the toxin production of food-borne microbes either in poultry bodies or poultry feedstuff. Moreover, studies that highlight their own toxicological mechanisms have been discussed. Adding natural additives to feed has a clear positive effect on the enzymatic and microbiological appearance of the small intestine without any adverse effect on the liver. Studies in this respect were proposed to clarify the effects of these natural additives for feed. In conclusion, it could be suggested that the incorporation of probiotics, herbal extracts, and herbs in the poultry diets has some beneficial effects on productive performance, without a positive impact on economic efficiency. In addition, the use of these natural additives in feed has a useful impact on the microbiological appearance of the small intestine and do not have any adverse impacts on intestinal absorption or liver activity as evidenced by histological examination.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Dalia H Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdo
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| |
Collapse
|