1
|
Korac L, Golestani N, MacNicol J, Souccar-Young J, Witherspoon S, Wildish A, Topfer S, Pearson W. Effect of a dietary nutraceutical "STRUCTURE-Joint" on response of horses to intra-articular challenge with IL-1: implications for tissue adaptation to stress. Transl Anim Sci 2024; 8:txae172. [PMID: 39713786 PMCID: PMC11660166 DOI: 10.1093/tas/txae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
The purpose was to determine local (articular) and systemic effects of intra-articular interleukin-1 in horses supplemented with a dietary PUFA supplement [STRUCTURE-Joint (ST-J)]. Sixteen (16) healthy, mature, light breed horses were randomly assigned to diets containing 0 or 120 mL (n = 8 per group) of ST-J for 30 d. On days 0 (prior to beginning supplementation) and 27, recombinant equine interleukin-1β (reIL-1 β) (75 ng) was injected into the left or right intercarpal joint to induce mild, transient synovitis. Synovial fluid was obtained by aseptic arthrocentesis at postinjection hour 0 (immediately prior to IL-1 injection), 6, 12, and 72. ST-J supplementation for 30 d significantly increased synovial fluid nitric oxide, and resolvin D1 compared with the unsupplemented control group and significantly increased PGE2 levels and reduced joint circumference in the ST-J treated horses on day 30 compared to the same group of horses on day 0. There was also a significant increase in plasma hemoglobin, free and total bilirubin, and decrease in plasma glucose. These data provide evidence for the usefulness of ST-J to modulate physiological variables with importance in exercise performance and tissue adaptation to exercise stress and further research on this product is warranted.
Collapse
Affiliation(s)
- Lindsay Korac
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nadia Golestani
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jennifer MacNicol
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jamie Souccar-Young
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sophie Witherspoon
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Arayih Wildish
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sydney Topfer
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
2
|
Mustonen AM, Lehmonen N, Paakkonen T, Raekallio M, Käkelä R, Niemelä T, Mykkänen A, Sihvo SP, Nieminen P. Equine osteoarthritis modifies fatty acid signatures in synovial fluid and its extracellular vesicles. Arthritis Res Ther 2023; 25:39. [PMID: 36895037 PMCID: PMC9996872 DOI: 10.1186/s13075-023-02998-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/27/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Individual fatty acids (FAs) and their derivatives (lipid mediators) with pro-inflammatory or dual anti-inflammatory and pro-resolving properties have potential to influence the health of joint tissues. Osteoarthritis (OA) is an age-associated chronic joint disease that can be featured with altered FA composition in the synovial fluid (SF) of human patients. The counts and cargo of extracellular vesicles (EVs), membrane-bound particles released by synovial joint cells and transporting bioactive lipids, can also be modified by OA. The detailed FA signatures of SF and its EVs have remained unexplored in the horse - a well-recognized veterinary model for OA research. METHODS The aim of the present study was to compare the FA profiles in equine SF and its ultracentrifuged EV fraction between control, contralateral, and OA metacarpophalangeal joints (n = 8/group). The FA profiles of total lipids were determined by gas chromatography and the data compared with univariate and multivariate analyses. RESULTS The data revealed distinct FA profiles in SF and its EV-enriched pellet that were modified by naturally occurring equine OA. Regarding SFs, linoleic acid (generalized linear model, p = 0.0006), myristic acid (p = 0.003), palmitoleic acid (p < 0.0005), and n-3/n-6 polyunsaturated FA ratio (p < 0.0005) were among the important variables that separated OA from control samples. In EV-enriched pellets, saturated FAs palmitic acid (p = 0.020), stearic acid (p = 0.002), and behenic acid (p = 0.003) indicated OA. The observed FA modifications are potentially detrimental and could contribute to inflammatory processes and cartilage degradation in OA. CONCLUSIONS Equine OA joints can be distinguished from normal joints based on their FA signatures in SF and its EV-enriched pellet. Clarifying the roles of SF and EV FA compositions in the pathogenesis of OA and their potential as joint disease biomarkers and therapeutic targets warrants future studies.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- grid.9668.10000 0001 0726 2490Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- grid.9668.10000 0001 0726 2490Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Nina Lehmonen
- grid.7737.40000 0004 0410 2071Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland
| | - Tommi Paakkonen
- grid.9668.10000 0001 0726 2490Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marja Raekallio
- grid.7737.40000 0004 0410 2071Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland
| | - Reijo Käkelä
- grid.7737.40000 0004 0410 2071Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
- grid.484023.9Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, P.O. Box 65, FI-00014 Helsinki, Finland
| | - Tytti Niemelä
- grid.7737.40000 0004 0410 2071Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland
| | - Anna Mykkänen
- grid.7737.40000 0004 0410 2071Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland
| | - Sanna P. Sihvo
- grid.7737.40000 0004 0410 2071Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
- grid.484023.9Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, P.O. Box 65, FI-00014 Helsinki, Finland
| | - Petteri Nieminen
- grid.9668.10000 0001 0726 2490Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
3
|
Pagan JD, Hauss AA, Pagan EC, Simons JL, Waldridge BM. Long-chain polyunsaturated fatty acid supplementation increases levels in red blood cells and reduces the prevalence and severity of squamous gastric ulcers in exercised Thoroughbreds. J Am Vet Med Assoc 2022; 260:S121-S128. [PMID: 36269687 DOI: 10.2460/javma.22.06.0275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess the relationship between plasma and RBC fatty acid composition and incidence and severity of squamous gastric ulcers when altered by short-chain (SC) or long-chain (LC) polyunsaturated fatty acid (PUFA) supplementation. ANIMALS 13 fit Thoroughbred horses in training. PROCEDURES Horses were evaluated by gastroscopy for squamous ulcer score, gastric pH, and blood fatty acid composition prior to supplementation (UNSUPP) and after 3 months of supplementation with a corn-flax oil blend of alpha-linolenic acid and linoleic acid (SC-PUFA) or a gamma-linolenic acid (GLA)-fish oil blend of GLA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA; LC-PUFA) in a crossover design. Prior to gastroscopy and blood collection, horses performed a 4,600-m standardized exercise test on the racetrack as a stressor. RESULTS Three months of supplementation with LC-PUFAs increased RBC levels of GLA, dihomo-gamma-linolenic acid (DGLA), arachidonic acid (AA), EPA, and DHA, and reduced severe ulcer prevalence (38% UNSUPP vs 8% LC-PUFA with a severe ulcer score of grade 3 to 4). Short-chain PUFA supplementation did not effectively elevate RBC GLA, DGLA, AA, EPA, or DHA and severe ulcer incidence was not different (38% UNSUPP vs 23% SC-PUFA with a severe ulcer score of grade 3 to 4). Lower levels of RBC GLA, DGLA, AA, and EPA correlated with severe squamous gastric ulceration (grade 3 to 4). CLINICAL RELEVANCE Equine gastric ulcer syndrome is prevalent in high-performance horses and is a concern to owners and trainers. Long-chain PUFA supplementation increased levels of GLA, DGLA, AA, EPA, and DHA, unlike SC-PUFA supplementation, and was associated positively with prevention or resolution of severe squamous gastric ulceration. Further studies are needed to evaluate different management styles and exercise intensities.
Collapse
Affiliation(s)
| | | | | | | | - Bryan M Waldridge
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| |
Collapse
|
4
|
Dose-Dependent Increase in Whole Blood Omega-3 Fatty Acid Concentration in Horses Receiving a Marine-Based Fatty-Acid Supplement. J Equine Vet Sci 2021; 108:103781. [PMID: 34800796 DOI: 10.1016/j.jevs.2021.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
The objective of this study was to determine the effects of an oral, commercially available, marine based omega-3 fatty acid (n3-FA) supplement on fatty acid characteristics in horse whole blood. Fifty healthy, adult horses of various light breeds were assigned to one of two treatment groups: Group 1 receiving 7.5g/day of the test supplement, and Group 2 receiving 15g/day of the test supplement. The supplement contained 0.092g docosahexaenoic acid (DHA) and 0.148g eicosapentaenoic acid (EPA) per gram. Therefore, Group 1 received 1.11g of EPA and 0.69g of DHA daily, while Group 2 received 2.22g of EPA and 1.38g DHA daily. Blood was taken at time of enrollment and after 6 and 12 weeks of supplementation. Blood was subjected to gas chromatography to quantify the fatty acid characteristics of whole blood. At both 6 and 12 weeks following supplementation, there was a significant increase in all n3-FAs evaluated, including DHA and EPA, compared to baseline values, with Group 2 significantly increased compared to Group 1 at both time points. There was also a significant decrease in omega-6 fatty acids (n6-FAs) between baseline and 6 weeks of supplementation in both groups, with a larger decrease seen in Group 2. The dose-dependent increases in concentration of all n3-FAs evaluated at all-time points validates the use of this product as a n3-FA targeted supplement in horses. These findings also suggest that dose of supplement has a greater effect on increasing whole blood n3-FAs compared to duration of treatment.
Collapse
|
5
|
Watkins A, Fasanello D, Stefanovski D, Schurer S, Caracappa K, D'Agostino A, Costello E, Freer H, Rollins A, Read C, Su J, Colville M, Paszek M, Wagner B, Reesink H. Investigation of synovial fluid lubricants and inflammatory cytokines in the horse: a comparison of recombinant equine interleukin 1 beta-induced synovitis and joint lavage models. BMC Vet Res 2021; 17:189. [PMID: 33980227 PMCID: PMC8117281 DOI: 10.1186/s12917-021-02873-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/30/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Lameness is a debilitating condition in equine athletes that leads to more performance limitation and loss of use than any other medical condition. There are a limited number of non-terminal experimental models that can be used to study early inflammatory and synovial fluid biophysical changes that occur in the equine joint. Here, we compare the well-established carpal IL-1β-induced synovitis model to a tarsal intra-articular lavage model, focusing on serial changes in synovial fluid inflammatory cytokines/chemokines and the synovial fluid lubricating molecules lubricin/proteoglycan 4 and hyaluronic acid. The objectives of this study were to evaluate clinical signs; synovial membrane and synovial fluid inflammation; and synovial fluid lubricants and biophysical properties in response to carpal IL-1β synovitis and tarsal intra-articular lavage. RESULTS Hyaluronic acid (HA) concentrations, especially high molecular weight HA, and synovial fluid viscosity decreased after both synovitis and lavage interventions. Synovial fluid lubricin concentrations increased 17-20-fold for both synovitis and lavage models, with similar changes in both affected and contralateral joints, suggesting that repeated arthrocentesis alone resulted in elevated synovial fluid lubricin concentrations. Synovitis resulted in a more severe inflammatory response based on clinical signs (temperature, heart rate, respiratory rate, lameness and joint effusion) and clinicopathological and biochemical parameters (white blood cell count, total protein, prostaglandin E2, sulfated glycosaminoglycans, tumor necrosis factor-α and CC chemokine ligands - 2, - 3, - 5 and - 11) as compared to lavage. CONCLUSIONS Synovial fluid lubricin increased in response to IL-1β synovitis and joint lavage but also as a result of repeated arthrocentesis. Frequent repeated arthrocentesis is associated with inflammatory changes, including increased sulfated glycosaminoglycan concentrations and decreased hyaluronic acid concentrations. Synovitis results in more significant inflammatory changes than joint lavage. Our data suggests that synovial fluid lubricin, TNF-α, CCL2, CCL3, CCL5, CCL11 and sGAG may be useful biomarkers for synovitis and post-lavage joint inflammation. Caution should be exercised when performing repeated arthrocentesis clinically or in experimental studies due to the inflammatory response and loss of HA and synovial fluid viscosity.
Collapse
Affiliation(s)
- Amanda Watkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Diana Fasanello
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Darko Stefanovski
- Department of Biostatistics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Schurer
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Katherine Caracappa
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Albert D'Agostino
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Emily Costello
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Heather Freer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Claire Read
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Marshall Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Heidi Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Fatty Acids and Oxylipins in Osteoarthritis and Rheumatoid Arthritis-a Complex Field with Significant Potential for Future Treatments. Curr Rheumatol Rep 2021; 23:41. [PMID: 33913032 PMCID: PMC8081702 DOI: 10.1007/s11926-021-01007-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Purpose of Review Osteoarthritis (OA) and rheumatoid arthritis (RA) are characterized by abnormal lipid metabolism manifested as altered fatty acid (FA) profiles of synovial fluid and tissues and in the way dietary FA supplements can influence the symptoms of especially RA. In addition to classic eicosanoids, the potential roles of polyunsaturated FA (PUFA)-derived specialized pro-resolving lipid mediators (SPM) have become the focus of intensive research. Here, we summarize the current state of knowledge of the roles of FA and oxylipins in the degradation or protection of synovial joints. Recent Findings There exists discordance between the large body of literature from cell culture and animal experiments on the adverse and beneficial effects of individual FA and the lack of effective treatments for joint destruction in OA and RA patients. Saturated 16:0 and 18:0 induce mostly deleterious effects, while long-chain n-3 PUFA, especially 20:5n-3, have positive influence on joint health. The situation can be more complex for n-6 PUFA, such as 18:2n-6, 20:4n-6, and its derivative prostaglandin E2, with a combination of potentially adverse and beneficial effects. SPM analogs have future potential as analgesics for arthritic pain. Summary Alterations in FA profiles and their potential implications in SPM production may affect joint lubrication, synovial inflammation, pannus formation, as well as cartilage and bone degradation and contribute to the pathogeneses of inflammatory joint diseases. Further research directions include high-quality randomized controlled trials on dietary FA supplements and investigations on the significance of lipid composition of microvesicle membrane and cargo in joint diseases.
Collapse
|
7
|
Christmann U, Hancock CL, Poole CM, Emery AL, Poovey JR, Hagg C, Mattson EA, Scarborough JJ, Christopher JS, Dixon AT, Craney DJ, Wood PL. Dynamics of DHA and EPA supplementation: incorporation into equine plasma, synovial fluid, and surfactant glycerophosphocholines. Metabolomics 2021; 17:41. [PMID: 33866431 DOI: 10.1007/s11306-021-01792-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/05/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Horses with asthma or osteoarthritis frequently receive ω-3 fatty acid supplements. Docosahexaenoic (DHA; 22:6) and eicosapentaenoic (EPA; 20:5) acids are essential ω-3 fatty acid precursors of anti-inflammatory mediators and components of structural glycerophospholipids (GPL) that act as reservoirs of these fatty acids. Analysis of the incorporation of dietary DHA + EPA into GPL pools in different body compartments has not been undertaken in horses. OBJECTIVES We undertook a detailed study of dietary supplementation with DHA + EPA in horses and monitored incorporation into DHA- and EPA-containing glycerophosphocholines (GPC) 38:5, 38:6, 40:5, and 40:6 in plasma, synovial fluid (SF), and surfactant. METHODS Horses (n = 20) were randomly assigned to the supplement or control group and evaluated on days 0, 30, 60, and 90. GPC in plasma, SF, and surfactant were measured by high-resolution mass spectrometry with less than 3 ppm mass error. Validation of DHA and EPA incorporation into these GPC was conducted utilizing MS2 of the [M + Cl]- adducts of GPC. RESULTS Dietary supplementation resulted in augmented levels of GPC 38:5, 38:6, 40:5, and 40:6 in all compartments. Maximum incorporation into GPCs was delayed until 60 days. Significant increases in the levels of GPC 38:5, 40:5, and 40:6, containing docosapentaenoic acid (DPA; 22:5), also was noted. CONCLUSIONS DHA and EPA supplementation results in augmented storage pools of ω-3 essential fatty acids in SF and surfactant GPC. This has the potential to improve the ability of anti-inflammatory mechanisms to resolve inflammatory pathways in these critical compartments involved in arthritis and asthma.
Collapse
Affiliation(s)
- Undine Christmann
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA.
| | - Courtney L Hancock
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Cathleen M Poole
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Audrey L Emery
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Jesse R Poovey
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Casey Hagg
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Eric A Mattson
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Jon J Scarborough
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Jordan S Christopher
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Alexander T Dixon
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Dustin J Craney
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| |
Collapse
|
8
|
Kosinska MK, Eichner G, Schmitz G, Liebisch G, Steinmeyer J. A comparative study on the lipidome of normal knee synovial fluid from humans and horses. PLoS One 2021; 16:e0250146. [PMID: 33861772 PMCID: PMC8051782 DOI: 10.1371/journal.pone.0250146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/31/2021] [Indexed: 12/02/2022] Open
Abstract
The current limitations in evaluating synovial fluid (SF) components in health and disease and between species are due in part to the lack of data on normal SF, because of low availability of SF from healthy articular joints. Our study aimed to quantify species-dependent differences in phospholipid (PL) profiles of normal knee SF obtained from equine and human donors. Knee SF was obtained during autopsy by arthrocentesis from 15 and 13 joint-healthy human and equine donors, respectively. PL species extracted from SF were quantitated by mass spectrometry whereas ELISA determined apolipoprotein (Apo) B-100. Wilcoxon’s rank sum test with adjustment of scores for tied values was applied followed by Holm´s method to account for multiple testing. Six lipid classes with 89 PL species were quantified, namely phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, phosphatidylethanolamine, plasmalogen, and ceramide. Importantly, equine SF contains about half of the PL content determined in human SF with some characteristic changes in PL composition. Nutritional habits, decreased apolipoprotein levels and altered enzymatic activities may have caused the observed different PL profiles. Our study provides comprehensive quantitative data on PL species levels in normal human and equine knee SF so that research in joint diseases and articular lubrication can be facilitated.
Collapse
Affiliation(s)
- Marta K. Kosinska
- Department of Orthopaedics, Laboratory for Experimental Orthopaedics, Justus Liebig University Giessen, Giessen, Germany
| | - Gerrit Eichner
- Mathematical Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Jürgen Steinmeyer
- Department of Orthopaedics, Laboratory for Experimental Orthopaedics, Justus Liebig University Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
9
|
Colbath AC, Dow SW, Hopkins LS, Phillips JN, McIlwraith CW, Goodrich LR. Single and repeated intra-articular injections in the tarsocrural joint with allogeneic and autologous equine bone marrow-derived mesenchymal stem cells are safe, but did not reduce acute inflammation in an experimental interleukin-1β model of synovitis. Equine Vet J 2020; 52:601-612. [PMID: 31821594 DOI: 10.1111/evj.13222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 10/23/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Allogeneic and autologous bone marrow-derived mesenchymal stem cells (BMDMSCs) have been administered in equine joints for their anti-inflammatory effects. However, allogeneic BMDMSC offer multiple clinical and practical advantages. Therefore, it is important to determine the relative effectiveness of allogeneic vs autologous BMDMSCs. OBJECTIVES The objective of the study was to compare the inflamed joint response to autologous vs allogeneic BMDMSCs injections, and to determine if either treatment generated an anti-inflammatory effect. STUDY DESIGN Randomised controlled study. METHOD Bone marrow was harvested from eight horses. Autologous BMDMSCs and pooled allogeneic BMDMSCs were culture expanded, cryopreserved and thawed immediately prior to administration. Ten million autologous BMDMSCs were administered with 75 ng rIL-1β into one tarsocrural joint and the contralateral tarsocrural joint received allogeneic BMDMSC plus 75 ng rIL-1β. Repeat injections were performed with the same treatment administered into the same joint. Four additional horses received 75 ng rIL-1β alone in a single tarsocrural joint. Clinical parameters (lameness, joint circumference and joint effusion) and synovial fluid parameters, including nucleated cell count (NCC), differential cell count, total protein (TP), prostaglandin E2 (PGE2 ) and C-reactive protein (CRP), were measured at baseline, 6, 12, 24, 72, 168 and 336 hours post-injection. RESULTS No difference was detected between autologous and allogeneic treatment groups with respect to subjective lameness, joint effusion, joint circumference, NCC, TP, differential cell count, CRP or PGE2 . Neither autologous nor allogeneic treatments resulted in an improvement in clinical or cytological parameters over that elicited by rIL-1β alone. MAIN LIMITATIONS A single dose of rIL-1β was evaluated and resulted in a severe synovitis which may have been too severe to observe a BMDMSC-mediated effect. CONCLUSIONS This study revealed that allogeneic and autologous BMDMSCs resulted in an equivalent clinical and cytological response. Allogeneic and autologous BMDMSCs were equally ineffective in reducing the inflammatory response from acute rIL-1β-induced joint inflammation in horses.
Collapse
Affiliation(s)
- Aimée C Colbath
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Steven W Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Leone S Hopkins
- Department of Clinical Sciences, College of Veterinary Medicine, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Jennifer N Phillips
- Orthopedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - C Wayne McIlwraith
- Orthopedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Laurie R Goodrich
- Orthopedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
10
|
Pro-atherogenic proteoglycanase ADAMTS-1 is down-regulated by lauric acid through PI3K and JNK signaling pathways in THP-1 derived macrophages. Mol Biol Rep 2019; 46:2631-2641. [DOI: 10.1007/s11033-019-04661-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/29/2019] [Indexed: 01/05/2023]
|
11
|
Colbath AC, Dow SW, Hopkins LS, Phillips JN, McIlwraith CW, Goodrich LR. Induction of Synovitis Using Interleukin-1 Beta: Are There Differences in the Response of Middle Carpal Joint Compared to the Tibiotarsal Joint? Front Vet Sci 2018; 5:208. [PMID: 30234134 PMCID: PMC6127273 DOI: 10.3389/fvets.2018.00208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022] Open
Abstract
Background: The effects of recombinant interleukin-1β (rIL-1β) have been described for the middle carpal joint (MCJ). However, we are unaware of any studies that have described the cytological response of the tibiotarsal joint (TTJ) to rIL-1β or compared the clinical and cytological responses of the MCJ to the TTJ following the administration of intra-articular rIL-1β. Such information is critical for researchers planning to use rIL-1β to create acute synovitis models in horses. Objectives: To compare the clinical and cytological responses of the MCJ to the TTJ following administration of intra-articular rIL-1β. Methods: Twelve horses were used for the study. Eight horses received 75 ng of rIL-1β into the MCJ and four horses received 75 ng of rIL-1β into the TTJ. Clinical and cytological outcome parameters including lameness, joint circumference, joint effusion score, total nucleated cell count, cellular differentials, C-reactive protein, and prostaglandin-E2 concentrations were determined at baseline and multiple post-treatment time points over a 336 h period (2 weeks). Results: Recombinant IL-1β administered into the TTJ resulted in a significantly greater respiratory rate at 24 h and heart rate at 12 h when compared to rIL-1β administered into the MCJ. In addition, the TTJ had a significantly greater increase in joint circumference at 24 post-injection hour (PIH) and subjective effusion grade at 24 PIH and 336 PIH. The MCJ had significantly higher total protein concentration at 6 PIH, and a significantly higher NCC at 24 and 72 PIH when compared to the TTJ. Conversely, the TTJ had significantly higher neutrophilic infiltration than the MCJ at 6 PIH and 168 PIH. Conclusions: This study establishes that the same intra-articular dose of rIL-1 β elicits significantly different clinical and cytological responses in the MCJ compared to the TTJ in the equine model of intra-articular synovitis. In addition, clinical and cytological evidence of synovitis may persist up to or >1 week following intra-articular administration of rIL-1 β.
Collapse
Affiliation(s)
- Aimee C Colbath
- Department of Clinical Sciences, Orthopaedic Research Center, Colorado State University, Fort Collins, CO, United States.,Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven W Dow
- Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Leone S Hopkins
- Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jennifer N Phillips
- Department of Clinical Sciences, Orthopaedic Research Center, Colorado State University, Fort Collins, CO, United States.,Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - C Wayne McIlwraith
- Department of Clinical Sciences, Orthopaedic Research Center, Colorado State University, Fort Collins, CO, United States.,Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Laurie R Goodrich
- Department of Clinical Sciences, Orthopaedic Research Center, Colorado State University, Fort Collins, CO, United States.,Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
12
|
Adler N, Schoeniger A, Fuhrmann H. Polyunsaturated fatty acids influence inflammatory markers in a cellular model for canine osteoarthritis. J Anim Physiol Anim Nutr (Berl) 2017; 102:e623-e632. [DOI: 10.1111/jpn.12804] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/27/2017] [Indexed: 11/27/2022]
Affiliation(s)
- N. Adler
- Institute of Biochemistry; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| | - A. Schoeniger
- Institute of Biochemistry; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| | - H. Fuhrmann
- Institute of Biochemistry; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| |
Collapse
|