1
|
Shah SAUR, Tang B, He D, Hao Y, Nabi G, Wang C, Kou Z, Wang K. Physiological function of gut microbiota and metabolome on successful pregnancy and lactation in the captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis)†. Biol Reprod 2024; 111:1249-1261. [PMID: 39135547 PMCID: PMC11647103 DOI: 10.1093/biolre/ioae123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 08/12/2024] [Indexed: 12/17/2024] Open
Abstract
Gestation period in captive Yangtze finless porpoise (YFP) is a well-coordinated and dynamic process, involving both systemic and local alterations. The gut microbiota and its connection to fecal metabolites are crucial in supporting fetal development and ensuring maternal health during reproductive stages. This study evaluates changes in the gut microbiota and their correlation with fecal metabolites in captive YFPs during different reproductive stages. The results reveal that microbial community structure changed significantly during reproductive stages, while gut microbial diversity remained stable. The genus unclassified Peptostrptococcaceae, Corynebacterium, and norank KD4-96 were significantly greater in non-pregnancy (NP), Terrisporobacter was significantly greater in lactating (LL), and Clostridium was significantly higher in early-pregnancy (EP) compared to the other groups. The host fecal metabolome exhibited significant alterations during the reproductive stages. Indoxyl sulfate, octadecatrienoic acid, and methionyl-methionine were significantly higher in the NP; galactosylglycerol, chondroitin 6-sulfate, and lumichrome were significantly higher in the EP and mid-pregnancy (MP); and valylleucine and butyryl-l-carnitine were significantly higher in the LL. The altered metabolites were mostly concentrated in pathways associated with arachidonic acid metabolism (significantly altered in NP), leucine, valine, and isoleucine biosynthesis (significantly altered in EP and MP), and glycerophospholipid metabolism (significantly altered in LL compared to others stages). Additionally, we found a strong link between variations in the host metabolism and alterations in the fecal bacteria of captive YFP. In conclusion, this study provides detailed insights into host metabolic and fecal bacterial changes in captive YFP during reproduction stages, providing important knowledge for improving the reproductive management in the captive YFP.
Collapse
Affiliation(s)
- Syed Ata Ur Rahman Shah
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Tang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Dekui He
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Yujiang Hao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Ghulam Nabi
- Department of Zoology, Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Chaoqun Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhangbing Kou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kexiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Chen Q, Peng C, Xie R, Xu H, Su Z, Yilihan G, Wei X, Yang S, Shen Y, Ye C, Jiang C. Placental and fetal enrichment of microplastics from disposable paper cups: implications for metabolic and reproductive health during pregnancy. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135527. [PMID: 39151363 DOI: 10.1016/j.jhazmat.2024.135527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The disposable paper cups (DPCs) release millions of microplastics (MPs) when used for hot beverages. However, the tissue-specific deposition and toxic effects of MPs and associated toxins remain largely unexplored, especially at daily consumption levels. We administered MPs and associated toxins extracted from leading brand DPCs to pregnant mice, revealing dose-responsive harmful effects on fetal development and maternal physiology. MPs were detected in all 13 examined tissues, with preferred depositions in the fetus, placenta, kidney, spleen, lung, and heart, contributing to impaired phenotypes. Brain tissues had the smallest MPs (90.35 % < 10 µm). A dose-responsive shift in the cecal microbiome from Firmicutes to Bacteroidetes was observed, coupled with enhanced biosynthesis of microbial fatty acids. A moderate consumption of 3.3 cups daily was sufficient to alter the cecal microbiome, global metabolic functions, and immune health, as reflected by tissue-specific transcriptomic analyses in maternal blood, placenta, and mammary glands, leading to neurodegenerative and miscarriage risks. Gene-based benchmark dose framework analysis suggested a safe exposure limit of 2 to 4 cups/day in pregnant mice. Our results highlight tissue-specific accumulation and metabolic and reproductive toxicities in mice at DPC consumption levels presumed non-hazardous, with potential health implications for pregnant women and fetuses.
Collapse
Affiliation(s)
- Qiong Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China.
| | - Chen Peng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ruwen Xie
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Haoteng Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Zhuojie Su
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Gulimire Yilihan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Xin Wei
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Sen Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Yueran Shen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Cunqi Ye
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China.
| |
Collapse
|
3
|
Liu D, Yang A, Li Y, Li Z, You P, Zhang H, Quan S, Sun Y, Zeng Y, Ma S, Xiong J, Hao Y, Li G, Liu B, Zhang H, Jiang Y. Targeted delivery of rosuvastatin enhances treatment of hyperhomocysteinemia-induced atherosclerosis using macrophage membrane-coated nanoparticles. J Pharm Anal 2024; 14:100937. [PMID: 39345941 PMCID: PMC11437771 DOI: 10.1016/j.jpha.2024.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 10/01/2024] Open
Abstract
Rosuvastatin (RVS) is an excellent drug with anti-inflammatory and lipid-lowering properties in the academic and medical fields. However, this drug faces a series of challenges when used to treat atherosclerosis caused by hyperhomocysteinemia (HHcy), including high oral dosage, poor targeting, and long-term toxic side effects. In this study, we applied nanotechnology to construct a biomimetic nano-delivery system, macrophage membrane (Møm)-coated RVS-loaded Prussian blue (PB) nanoparticles (MPR NPs), for improving the bioavailability and targeting capacity of RVS, specifically to the plaque lesions associated with HHcy-induced atherosclerosis. In vitro assays demonstrated that MPR NPs effectively inhibited the Toll-like receptor 4 (TLR4)/hypoxia-inducible factor-1α (HIF-1α)/nucleotide-binding and oligomerization domain (NOD)-like receptor thermal protein domain associated protein 3 (NLRP3) signaling pathways, reducing pyroptosis and inflammatory response in macrophages. Additionally, MPR NPs reversed the abnormal distribution of adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1)/ATP binding cassette transporter G1 (ABCA1)/ATP binding cassette transporter G1 (ABCG1) caused by HIF-1α, promoting cholesterol efflux and reducing lipid deposition. In vivo studies using apolipoprotein E knockout (ApoE -/-) mice confirmed the strong efficacy of MPR NPs in treating atherosclerosis with favorable biosecurity, and the mechanism behind this efficacy is believed to involve the regulation of serum metabolism and the remodeling of gut microbes. These findings suggest that the synthesis of MPR NPs provides a promising nanosystem for the targeted therapy of HHcy-induced atherosclerosis.
Collapse
Affiliation(s)
- Dayue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Anning Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yulin Li
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhenxian Li
- Hunan University of Chinese Medicine, First Clinical College of Traditional Chinese Medicine, Changsha, 410007, China
| | - Peidong You
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Hongwen Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Shangkun Quan
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Yue Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yaling Zeng
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Shengchao Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiantuan Xiong
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Yinju Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Guizhong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Bin Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- College of Biology, Hunan University, Changsha, 410082, China
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410000, China
| | - Huiping Zhang
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
- College of Biology, Hunan University, Changsha, 410082, China
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410000, China
| | - Yideng Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| |
Collapse
|
4
|
Chen Q, Zhao FQ, Han B, Jiang C, Liu H. Methionyl-Methionine Dipeptide Enhances Mammogenesis and Lactogenesis by Suppressing the Expression of a Novel Long Noncoding RNA MGPNCR to Inhibit eIF4B Dephosphorylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6414-6423. [PMID: 38501560 DOI: 10.1021/acs.jafc.4c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Previous research has demonstrated that in pregnant mice deficient in l-methionine (Met), the mixture of the dipeptide l-methionyl-l-methionine (Met-Met) with Met was more effective than Met alone in promoting mammogenesis and lactogenesis. This study aimed to investigate the role of a novel long noncoding RNA (lncRNA), named mammary gland proliferation-associated lncRNA (MGPNCR), in these processes. Transcriptomic analysis of mammary tissues from Met-deficient mice, supplemented either with a Met-Met/Met mixture or with Met alone, revealed significantly higher MGPNCR expression in the Met group compared to the mixture group, a finding recapitulated in a mammary epithelial cell model. Our findings suggested that MGPNCR hindered mammogenesis and milk protein synthesis by binding to eukaryotic initiation factor 4B (eIF4B). This interaction promoted the dephosphorylation of eIF4B at serine-422 by enhancing its association with protein phosphatase 2A (PP2A). Our study sheds light on the regulatory mechanisms of lncRNA-mediated dipeptide effects on mammary cell proliferation and milk protein synthesis. These insights underscore the potential benefits of utilizing dipeptides to improve milk protein in animals and potentially in humans.
Collapse
Affiliation(s)
- Qiong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Feng-Qi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, P. R. China
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Bingqing Han
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, P. R. China
| | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, P. R. China
| |
Collapse
|
5
|
Chen Q, Zhao FQ, Ren Y, Han J, Liu J, Li Y, Liu H. Parenterally Delivered Methionyl-Methionine Dipeptide During Pregnancy Enhances Mammogenesis and Lactation Performance Over Free Methionine by Activating PI3K-AKT Signaling in Methionine-Deficient Mice. J Nutr 2020; 150:1186-1195. [PMID: 32006013 DOI: 10.1093/jn/nxaa005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/23/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pregnancy-induced hypoaminoacidemia, l-methionine (Met) included, disturbs embryogenesis and may also affect breast function. Supplementation with the dipeptide l-methionyl-Met (Met-Met) may improve lactation performance. OBJECTIVE We compared the effects of supplemental Met or Met-Met during pregnancy on mammogenesis and lactogenesis and investigated underlying mechanisms. METHODS In experiment 1, 9-wk-old ICR mice (n = 72, ∼30 g) were divided into 3 groups. During the first 17 days of pregnancy (DP), the Control group was fed a diet with Met (8.2 g/kg) and saline was intraperitoneally injected, the Met group was fed a Met-devoid diet and 35% of the Met (92-mmo l Met) as contained in the Control diet was intraperitoneally injected, and the Met-Met group was fed the same diet and 70-mmo l Met plus 11-mmo l Met-Met was intraperitoneally injected. All animals were fed the Control diet after DP17 and during lactation. Mammogenesis, lactogenesis, transcriptome at DP17, and milk performance during lactation were examined. In experiment 2, 9-wk-old ICR mice (n = 55, ∼30 g) at DP0 were injected through the teat with adeno-associated virus for overexpression/inhibition of phosphoinositide-3-kinase regulatory subunit 1 (Pik3r1), divided into the Control, Met, and Met-Met groups and received the same treatment as experiment 1 to examine mammogenesis and lactogenesis at DP17. RESULTS In experiment 1, compared with the Met group, the Met-Met group showed higher (P < 0.05) mammary epithelium percentage (42%) and αS1-casein expression (84%) at DP17, milk yield (34%) and energy concentrations (8.7%) during lactation; transcriptomic analysis illustrated activated phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling in the mammary glands of the Met-Met group (P-adj < 0.001). In experiment 2, overexpression of Pik3r1 enhanced (P < 0.05) the protective effect of Met-Met over Met on mammogenesis and β-casein expression. CONCLUSION Met-Met is more effective than Met in promoting mammogenesis and lactogenesis mainly by activation of PI3K-AKT signaling in Met-deficient mice.
Collapse
Affiliation(s)
- Qiong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Feng-Qi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.,Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Yifei Ren
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jialiang Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yang Li
- Obstetrical Department, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| |
Collapse
|