1
|
Hou M, Ye M, Ma X, Sun Y, Yao G, Liu L, Li X, Hu Y, Wang J. Colon microbiota and metabolite potential impact on tail fat deposition of Altay sheep. Microbiol Spectr 2024; 12:e0310323. [PMID: 38647275 PMCID: PMC11237728 DOI: 10.1128/spectrum.03103-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/23/2024] [Indexed: 04/25/2024] Open
Abstract
Tail fat deposition of Altay sheep not only increased the cost of feeding but also reduced the economic value of meat. Currently, because artificial tail removal and gene modification methods cannot solve this problem, it is maybe to consider reducing tail fat deposition from the path of intestinal microbiota and metabolite. We measured body weight and tail fat weight, collected the serum for hormone detection by enzyme-linked immunosorbent assay, and collected colon contents to 16S rRNA sequence and liquid chromotography with mass spectrometry detection to obtain colon microbiota and metabolite information, from 12 3-month-old and 6-month-old Altay sheep. Subsequently, we analyzed the correlation between colon microbiota and tail fat weight, hormones, and metabolites, respectively. We identified that the tail fat deposition of Altay sheep increased significantly with the increase of age and body weight, and the main microbiota that changed were Verrucomicrobia, Cyanobacteria, Akkermansia, Bacteroides, Phocaeicola, Escherichia-Shigella, and Clostridium_sensu_stricto_1. The results indicated that the diversities of metabolites in the colon contents of 3-months old and 6-months old were mainly reflected in phosphocholine (PC) and phosphatidylethanolamine (PE) in the lipid metabolism pathway. The correlations analyzed showed that Verrucomicrobia, Chlamydiae, Akkermansia, Ruminococcaceae_UCG-005, Bacteroides, and Phocaeicola were negatively correlated with tail fat deposition. Verrucomicrobia, Akkermansia, and Bacteroides were negatively correlated with growth hormone (GH). Verrucomicrobia was positively correlated with L-a-lysophosphatidylserine and PE(18:1(9Z)/0:0). Our results showed that tail fat deposition of Altay sheep was probably correlated with the abundance of Verrucomicrobia, Akkermansia, Bacteroides of colon microbiota, PC, PE of metabolites, and GH of serum. IMPORTANCE Excessive tail fat deposition of Altay sheep caused great economic losses, and the current research results could not solve this problem well. Now, our research speculates that the tail fat deposition of Aletay sheep may be related to the abundance of Verrucomicrobia, Akkermansia, Bacteroides, metabolites phosphocholine, phosphatidylethanolamine, and growth hormone of serum. Further investigation of the interaction mechanism between these microbiota or metabolites and tail fat deposition is helpful in reducing tail fat deposition of Altay sheep and increasing the economic benefits of breeding farms.
Collapse
Affiliation(s)
- Meng Hou
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Mengjun Ye
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Xuelian Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yawei Sun
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Liya Liu
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science Animal Medical Research Center, Urumqi, China
| | - Xin Li
- Animal Disease Control and Diagnosis Center of Altay Region, Xinjiang, China
| | - Yan Hu
- Technology Talent Development Center of The Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jinquan Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
2
|
Chen J, Wang Y, Qi X, Cheng H, Chen N, Ahmed Z, Chen Q, Lei C, Yang X. Genome-wide analysis emancipates genomic diversity and signature of selection in Altay white-headed cattle of Xinjiang, China. Front Genet 2023; 14:1144249. [PMID: 37065480 PMCID: PMC10098193 DOI: 10.3389/fgene.2023.1144249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Altay white-headed cattle have not received enough attention for several reasons. Due to irrational breeding and selection practices, the number of pure Altay white-headed cattle has decreased significantly and the breed is now on the eve of extinction. The genomic characterization will be a crucial step towards understanding the genetic basis of productivity and adaptability to survival under native Chinese agropastoral systems; nevertheless, no attempt has been made in Altay white-headed cattle. In the current study, we compared the genomes of 20 Altay white-headed cattle to the genomes of 144 individuals in representative breeds. Population genetic diversity revealed that the nucleotide diversity of Altay white-headed cattle was less than that of indicine breeds and comparable to that of Chinese taurus cattle. Using population structure analysis, we also found that Altay white-headed cattle carried the ancestry of the European and East Asian cattle lineage. In addition, we used three different methods (FST, θπ ratio and XP-EHH) to investigate the adaptability and white-headed phenotype of Altay white-headed cattle and compared it with Bohai black cattle. We found EPB41L5, SCG5 and KIT genes on the list of the top one percent genes, these genes might have an association with environmental adaptability and the white-headed phenotype for this breed. Our research reveals the distinctive genomic features of Altay white-headed cattle at the genome-wide level.
Collapse
Affiliation(s)
- Jialei Chen
- Life Science College, Luoyang Normal University, Luoyang, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yushu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xingshan Qi
- Biyang Xianan Cattle Technology and Development Company Ltd., Biyang, China
| | - Haijian Cheng
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zulfiqar Ahmed
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Shabestar, Pakistan
| | - Qiuming Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- *Correspondence: Chuzhao Lei, ; Xueyi Yang,
| | - Xueyi Yang
- Life Science College, Luoyang Normal University, Luoyang, China
- *Correspondence: Chuzhao Lei, ; Xueyi Yang,
| |
Collapse
|
3
|
Ji K, Jiao D, Yang G, Degen AA, Zhou J, Liu H, Wang W, Cong H. Transcriptome analysis revealed potential genes involved in thermogenesis in muscle tissue in cold-exposed lambs. Front Genet 2022; 13:1017458. [PMID: 36338953 PMCID: PMC9634817 DOI: 10.3389/fgene.2022.1017458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Cold tolerance is an important trait for sheep raised at high altitudes. Muscle tissue, comprising 30–40% of the total body mass, produces heat during cold exposure. However, little is known about the genetic mechanisms of this tissue and its role in thermogenesis in lambs. We examined genes in skeletal muscle tissue in a cold-adapted sheep breed, Altay, and a cold-intolerant sheep breed, Hu, when exposed to low air temperature. Three ewe-lambs of each breed were maintained at −5°C and three ewe-lambs of each breed were maintained at 20°C. After cold exposure for 25 days, the longissimus dorsi of each lamb was collected, and transcriptome profiles were sequenced and analyzed. The results of RNA-seq showed that the average reads among the four groups were 11.0 Gbase. The genome mapping rate averaged 88.1% and the gene mapping rate averaged 82.5%. The analysis of differentially expressed genes (DEGs) indicated that the peroxisome proliferator-activated receptors (PPAR), cAMP, and calcium signaling pathways and muscle contraction in muscle tissue were linked to thermogenesis in cold-exposed lambs. Furthermore, PCK1 (phosphoenolpyruvate carboxykinase1) increased glyceroneogenesis in cold-exposed Altay lambs, and APOC3 (apolipoprotein C3), LPL (lipoprotein lipase), and FABP4 (fatty acid binding protein 4, adipocyte) were involved in the intake and transport of free fatty acids. In Hu sheep, cAMP biosynthesis from ATP hydrolysis was regulated by ADCY10 (adenylate cyclase) and ADORA2a (adenosine A2a receptor). Skeletal muscle contraction was regulated by MYL2 (myosin light chain 2). In conclusion, cold exposure altered the expression level of genes involved in heat production in muscle tissue. Some potential mechanisms were revealed, including calcium ion transport in the calcium signaling pathway, fatty acid metabolism in the PPAR signaling pathway, and cAMP biosynthesis in the cAMP signaling pathway. This study implied that skeletal muscle plays an important role in thermoregulation in lambs.
Collapse
Affiliation(s)
- Kaixi Ji
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Jiao
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guo Yang
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Guo Yang,
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of Negev, Beer Sheva, Israel
| | - Jianwei Zhou
- State Key Laboratory of Grassland and Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hu Liu
- College of Ecology, Lanzhou University, Lanzhou, China
| | - Wenqiang Wang
- College of Ecology, Lanzhou University, Lanzhou, China
| | - Haitao Cong
- Dongying Modern Animal Husbandry Development Service Center, Dongying, China
| |
Collapse
|
4
|
Transcriptome Profiles of the Liver in Two Cold-Exposed Sheep Breeds Revealed Different Mechanisms and Candidate Genes for Thermogenesis. Genet Res (Camb) 2021; 2021:5510297. [PMID: 36017327 PMCID: PMC9364924 DOI: 10.1155/2021/5510297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
Cold-induced thermogenesis plays an important role in the survival of lambs exposed to
low air temperatures. The liver produces and mediates heat production in mammals; however,
to date, little is known about the role of liver genes in cold-induced thermogenesis in
lambs. In this study, the difference in the liver transcriptome between Altay and Hu ewe
lambs was compared. Because of different backgrounds of the two breeds, we hypothesized
that the transcriptome profiles of the liver would differ between breeds when exposed to
cold. Cold-exposed Altay lambs activated 8 candidate genes (ACTA1,
MYH1, MYH2, MYL1,
MYL2, TNNC1, TNNC2, and
TNNT3) involved in muscle shivering thermogenesis; 3 candidate genes
(ATP2A1, SLN, and CKM) involved in
muscle nonshivering thermogenesis related to the Ca2+ signal and creatine
cycle; and 6 candidate genes (PFKM, ALDOC,
PGAM2, ENO2, ENO3, and
ENO4) involved in enhancing liver metabolism. In contrast, the liver
may not act as the main tissue for thermogenesis in cold-exposed Hu lambs. We concluded
that Altay lambs rely on liver-mediated shivering and nonshivering thermogenesis by muscle
tissue to a greater extent than Hu lambs. Results from this study could provide a
theoretical foundation for the breeding and production of cold-resistant lambs.
Collapse
|
5
|
Feng T, Ding H, Wang J, Xu W, Liu Y, Kenéz Á. Metabolite Profile of Sheep Serum With High or Low Average Daily Gain. Front Vet Sci 2021; 8:662536. [PMID: 34026897 PMCID: PMC8131665 DOI: 10.3389/fvets.2021.662536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China.,Joint Laboratory of Animal Science Between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Hongxiang Ding
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China.,Joint Laboratory of Animal Science Between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jing Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, China
| | - Wei Xu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China.,Joint Laboratory of Animal Science Between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, China
| | - Ákos Kenéz
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Jiao D, Ji K, Liu H, Wang W, Wu X, Zhou J, Zhang Y, Zhou H, Hickford JGH, Degen AA, Yang G. Transcriptome Analysis Reveals Genes Involved in Thermogenesis in Two Cold-Exposed Sheep Breeds. Genes (Basel) 2021; 12:genes12030375. [PMID: 33800742 PMCID: PMC7999592 DOI: 10.3390/genes12030375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 01/07/2023] Open
Abstract
Thermogenesis plays an important role in the survival of sheep exposed to low temperatures; however, little is known about the genetic mechanisms underlying cold adaptation in sheep. We examined 6 Altay (A) and 6 Hu (H) six-month-old ewe lambs. Altay sheep are raised in northern China and are adapted to dry, cold climates, while Hu sheep are raised in southern China and are adapted to warm, humid climates. Each breed was divided into two groups: chronic cold sheep, exposed to -5 °C for 25 days (3 Ac; 3 Hc), and thermo-neutral sheep, maintained at 20 °C (3 Aw; 3 Hw). The transcriptome profiles of hypothalamus, tail-fat and perirenal fat tissues from these four groups were determined using paired-end sequencing for RNA expression analysis. There are differences in cold tolerance between Hu and Altay sheep. Under cold exposure of the lambs: (1) UCP1-dependent thermogenesis and calcium- and cAMP-signaling pathways were activated; and (2) different fat tissues were activated in Hu and Altay lambs. Several candidate genes involved in thermogenesis including UCP1, ADRB3, ADORA2A, ATP2A1, RYR1 and IP6K1 were identified. Molecular mechanisms of thermogenesis in the sheep are discussed and new avenues for research are suggested.
Collapse
Affiliation(s)
- Dan Jiao
- Northwest Institute of Ecological Environment and Resources, Chinese Academy of Sciences, Lanzhou 730070, China; (D.J.); (K.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixi Ji
- Northwest Institute of Ecological Environment and Resources, Chinese Academy of Sciences, Lanzhou 730070, China; (D.J.); (K.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Liu
- School of Life Sciences, Lanzhou University, Lanzhou 730070, China; (H.L.); (W.W.); (J.Z.)
| | - Wenqiang Wang
- School of Life Sciences, Lanzhou University, Lanzhou 730070, China; (H.L.); (W.W.); (J.Z.)
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Jianwei Zhou
- School of Life Sciences, Lanzhou University, Lanzhou 730070, China; (H.L.); (W.W.); (J.Z.)
| | - Yunsheng Zhang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Science, Xinjiang 830000, China;
| | - Huitong Zhou
- Gene-Marker Laboratory, Department of Agricultural Sciences, Lincoln University, Lincoln 7647, New Zealand; (H.Z.); (J.G.H.H.)
| | - Jon G. H. Hickford
- Gene-Marker Laboratory, Department of Agricultural Sciences, Lincoln University, Lincoln 7647, New Zealand; (H.Z.); (J.G.H.H.)
| | - Allan A. Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of Negev, Beer Sheva l8410500, Israel;
| | - Guo Yang
- Northwest Institute of Ecological Environment and Resources, Chinese Academy of Sciences, Lanzhou 730070, China; (D.J.); (K.J.)
- Correspondence: ; Tel.: +86-(0931)-4967298
| |
Collapse
|