1
|
Liu Y, Liu S, Wan S, Li Z, Li H, Tang S. Anti-inflammatory properties of Bacillus pumilus TS1 in lipopolysaccharide-induced inflammatory damage in broilers. Anim Biotechnol 2024; 35:2418516. [PMID: 39460459 DOI: 10.1080/10495398.2024.2418516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
This study investigates whether Bacillus pumilus TS1 improves growth performance and alleviates inflammatory damage in broilers and explored its feasibility as an antibiotic alternative. We divided 240 one-day-old AA308 white-finned broilers into five groups (con, LPS, TS1L + LPS, TS1M + LPS and TS1H + LPS). The TS1L + LPS, TS1M + LPS and TS1H + LPS groups were fed TS1 for 15 days by gavage. The LPS, TS1L + LPS, TS1M + LPS and TS1H + LPS groups were injected intraperitoneally with 1 mg/kg LPS for three days. We investigated the probiotic and anti-inflammatory activities by measuring body weight, sequencing the intestinal flora and examining the structure of tissues by using pathological stain, real-time PCR, Western blotting and immunohistochemical detection. TS1 could improve growth performance and intestinal flora composition, also reduced different organ damage and inflammatory cytokine expression in serum and organs. The mechanism may involve upregulating HSP60 and HSP70 expression, targeting and regulating Nrf2 and P38 MAPK and modulating NF-κB and HO-1 expression at the transcriptional level in different organs. B. pumilus TS1 alleviated Inflammatory injury caused by LPS and attenuated the inflammatory response in broilers, and these effects were achieved through MAPK and Nrf2 regulation of HSPs/HO-1 in different organs. The above results suggested broilers fed with TS1 could release the LPS caused organ damage, and the most suggested dosage was 1.4 × 108 CFU/mL.
Collapse
Affiliation(s)
- Yinkun Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Sirui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuangshuang Wan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zixin Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Yan L, Ye B, Yang M, Shan Y, Yan D, Fang D, Zhang K, Yu Y. Gut microbiota and metabolic changes in children with idiopathic short stature. BMC Pediatr 2024; 24:468. [PMID: 39039462 PMCID: PMC11265363 DOI: 10.1186/s12887-024-04944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Idiopathic short stature (ISS) is characterized by short stature with unknown causes. Recent studies showed different gut microbiota flora and reduced fecal short-chain fatty acids in ISS children. However, the roles of the microbiome and metabolites in the pathogenesis of ISS remains largely unknown. METHODS We recruited 51 Chinese subjects, comprising 26 ISS children and 25 normal-height control individuals. Untargeted metabolomics was performed to explore the fecal metabolic profiles between groups. A shotgun metagenomic sequencing approach was used to investigate the microbiome at the strains level. Mediation analyses were done to reveal correlations between the height standard deviation (SD) value, the gut microbiome and metabolites. RESULTS We detected marked differences in the composition of fecal metabolites in the ISS group, particularly a significant increase in erucic acid and a decrease in spermidine, adenosine and L-5-Hydroxytryptophan, when compared to those of controls. We further identified specific groups of bacterial strains to be associated with the different metabolic profile. Through mediation analysis, 50 linkages were established. KEGG pathway analysis of microbiota and metabolites indicated nutritional disturbances. 13 selected features were able to accurately distinguish the ISS children from the controls (AUC = 0.933 [95%CI, 79.9-100%]) by receiver operating characteristic (ROC) analysis. CONCLUSION Our study suggests that the microbiome and the microbial-derived metabolites play certain roles in children's growth. These findings provide a new research direction for better understanding the mechanism(s) underlying ISS.
Collapse
Affiliation(s)
- Luyan Yan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Pediatric Internal Medicine, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, China
| | - Min Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongsheng Shan
- Department of Pediatrics, Xiaoshan Hospital Affiliated to Hangzhou Normal University, Hangzhou, China
| | - Dan Yan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - DanFeng Fang
- Department of Pediatric Internal Medicine, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, China
| | - Kaichuang Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Lei J, Ran X, Guo M, Liu J, Yang F, Chen D. Screening, Identification, and Probiotic Properties of Bacillus Pumilus From Yak. Probiotics Antimicrob Proteins 2024; 16:531-540. [PMID: 36995549 DOI: 10.1007/s12602-023-10054-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/31/2023]
Abstract
The yak has a unique physiological structure suited to life in anoxic and cold environments at high altitudes. The aim of this study was to isolate Bacillus species with good probiotic properties from yak feces. A series of tests were performed on the isolated Bacillus: 16S rRNA identification, antibacterial activity, tolerance to gastroenteric fluid, hydrophobicity, auto-aggregation, antibiotic sensitivity, growth performance, antioxidants, and immune indexes. A safe and harmless Bacillus pumilus DX24 strain with good survival rate, hydrophobicity, auto-aggregation, and antibacterial activity was identified in the yak feces. Feeding mice with Bacillus pumilus DX24 increased their daily weight gain, jejunal villus length, villi/Crypt ratio, blood IgG levels, and jejunum sIgA levels. This study confirmed the probiotic effects of Bacillus pumilus isolated from yak feces and provides the theoretical basis for the clinical application and development of new feed additives.
Collapse
Affiliation(s)
- Jiangying Lei
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Xuan Ran
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Minghao Guo
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jiahao Liu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Falong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China.
| |
Collapse
|
4
|
Wang L, Zhang G, Li Q, Lu F, Yang K, Dai X. Carrageenan oligosaccharide alleviates intestinal damage via gut microflora through activating IMD/relish pathway in female Drosophila melanogaster. FASEB J 2024; 38:e23455. [PMID: 38308636 DOI: 10.1096/fj.202301218r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Recent evidence suggests the anti-inflammatory effect of carrageenan oligosaccharides (COS). The effects of COS on intestinal injury induced by 0.6% sodium dodecyl sulfate (SDS) and the molecular mechanisms involved were investigated in this study. 0.625, 1.25, and 2.5 mg/mL COS in diet had no toxic effect in flies, and they could all prolong SDS-treated female flies' survival rate. 1.25 mg/mL COS prevented the development of inflammation by improving the intestinal barrier integrity and maintaining the intestinal morphology stability, inhibited the proliferation of intestine stem cells (ISCs), and the production of lysosomes induced by SDS, accompanied by a decrease in the expression of autophagy-related genes. Moreover, COS decreased the active oxygen species (ROS) content in gut and increased the antioxidant activity in SDS-induced female flies, while COS still played a role in increasing survival rate and decreasing intestinal leakage in CncC-RNAi flies. The improvement of anti-inflammation capacity may be associated with the regulation of intestinal microflora with COS supplementation for Drosophila melanogaster. COS changed the gut microbiota composition, and COS had no effect on germ-free (GF) flies. It is highlighted that COS could not work in Relish-RNAi flies, indicating relish is required for COS to perform beneficial effects. These results provide insights into the study of gut microbiota interacting with COS to modulate intestinal inflammation in specific hosts.
Collapse
Affiliation(s)
- Lu Wang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Guocai Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Qiaowei Li
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Fangyuan Lu
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Kun Yang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Zhang N, Li J, Wang L, Wei Y, Emu Q, Xu F, Zhang L. Transcriptome analysis reveals the regulatory effects of Bacillus amyloliquefaciens and Bacillus pumilus on immune and digestive related genes in the spleen of weanling black goats. Funct Integr Genomics 2023; 23:124. [PMID: 37055595 DOI: 10.1007/s10142-023-01025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The aim of the present study was to evaluate the effects of Bacillus amyloliquefaciens fsznc-06 and Bacillus pumilus fsznc-09 on the expressions of spleen genes in weanling Jintang black goats. Bacillus amyloliquefaciens fsznc-06 (BA-treated group) and Bacillus pumilus fsznc-09 (BP-treated group) were directly fed to goats, and the spleens were harvested for transcriptome analysis. The KEGG pathway analysis showed that the differentially expressed genes (DEGs) in BA-treated vs CON group were mainly involved in digestive system and immune system, while those in BP-treated vs CON group were mainly involved in immune system, and those in BA-treated vs BP-treated group were mainly involved in digestive system. In conclusion, Bacillus amyloliquefaciens fsznc-06 might promote the expressions of genes related to immune system and digestive system, reduce the expressions of disease genes related to digestive system and might promote mutual accommodation of some immune genes in weanling black goat. Bacillus pumilus fsznc-09 might promote the expressions of genes related to immune system and mutual accommodation of some immune genes in weanling black goat. Bacillus amyloliquefaciens fsznc-06 has advantages over Bacillus pumilus fsznc-09 in promoting the expressions of genes related to digestive system and mutual accommodation of some immune genes.
Collapse
Affiliation(s)
- Nanchi Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, No.16, South Fourth Section, First Ring Road, Chengdu, 610041, China
| | - Juan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, No.16, South Fourth Section, First Ring Road, Chengdu, 610041, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Chengdu, 610041, China.
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, No.16, South Fourth Section, First Ring Road, Chengdu, 610041, China.
| | - Yong Wei
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Sichuan Animal Sciences Academy, No.7, Niusha Road, Chengdu, 610066, China.
| | - Quzhe Emu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Sichuan Animal Sciences Academy, No.7, Niusha Road, Chengdu, 610066, China
| | - Feng Xu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Sichuan Animal Sciences Academy, No.7, Niusha Road, Chengdu, 610066, China
| | - Lin Zhang
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Sichuan Animal Sciences Academy, No.7, Niusha Road, Chengdu, 610066, China
| |
Collapse
|
6
|
Ma X, Li J, Yang L, Liu H, Zhu Y, Ren H, Yu F, Liu B. Short Term Effect of Ivermectin on the Bacterial Microbiota from Fecal Samples in Chinchillas ( Chinchilla lanigera). Vet Sci 2023; 10:vetsci10020169. [PMID: 36851473 PMCID: PMC9960913 DOI: 10.3390/vetsci10020169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
The gastrointestinal microbiota plays an important role in health of the host animals and the detrimental influence of pharmaceutical treatment on the fecal microbiota receives an increasing concern. The clinical use of ivermectin on chinchillas has not yet been evaluated. The purpose of our study was to assess the influence of ivermectin injection on the fecal bacterial microbiota of chinchillas. A with-in subject, before and after study was performed on 10 clinically healthy chinchillas during a 14-day period, all chinchillas received the same ivermectin treatment, and the microbiota from their fecal samples before and after administration were compared as two experimental groups. Fecal samples were collected on day 0 (before ivermectin administration) and day 14 (post ivermectin administration). Fecal bacterial microbiota was analyzed by bacterial 16S rRNA gene sequencing. No clinical abnormalities were observed post subcutaneous administration of ivermectin. No significant alteration was found in the abundance and diversity of fecal bacterial microbiota after treatment, but the dominant position of some bacterial species changed. In conclusion, ivermectin administration was associated with minimal alternations of the fecal bacterial microbiota in healthy chinchillas, and these changes had no observed negative effect on general health of chinchillas in short term.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- China Agricultural University Veterinary Teaching Hospital (Beijing Zhongnongda Veterinary Hospital Co., Ltd.), Beijing 100193, China
| | - Luo Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Haoqian Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiping Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Honglin Ren
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Feng Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- China Agricultural University Veterinary Teaching Hospital (Beijing Zhongnongda Veterinary Hospital Co., Ltd.), Beijing 100193, China
- Correspondence: (F.Y.); (B.L.)
| | - Bo Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- China Agricultural University Veterinary Teaching Hospital (Beijing Zhongnongda Veterinary Hospital Co., Ltd.), Beijing 100193, China
- Correspondence: (F.Y.); (B.L.)
| |
Collapse
|
7
|
Liu Y, Li Z, Li H, Wan S, Tang S. Bacillus pumilus TS1 alleviates Salmonella Enteritidis-induced intestinal injury in broilers. BMC Vet Res 2023; 19:41. [PMID: 36759839 PMCID: PMC9912683 DOI: 10.1186/s12917-023-03598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND In the current context of reduced and limited antibiotic use, several pathogens and stressors cause intestinal oxidative stress in poultry, which leads to a reduced feed intake, slow or stagnant growth and development, and even death, resulting in huge economic losses to the poultry breeding industry. Oxidative stress in animals is a non-specific injury for which no targeted drug therapy is available; however, the health of poultry can be improved by adding appropriate feed additives. Bacillus pumilus, as a feed additive, promotes growth and development and reduces intestinal oxidative stress damage in poultry. Heat shock protein 70 (HSP70) senses oxidative damage and repairs unfolded and misfolded proteins; its protective effect has been widely investigated. Mitogen-activated protein kinase/protein kinase C (MAPK/PKC) and hypoxia inducible factor-1 alpha (HIF-1α) are also common proteins associated with inflammatory response induced by several stressors, but there is limited research on these proteins in the context of poultry intestinal Salmonella Enteritidis (SE) infections. In the present study, we isolated a novel strain of Bacillus pumilus with excellent performance from the feces of healthy yaks, named TS1. To investigate the effect of TS1 on SE-induced enteritis in broilers, 120 6-day-old white-feathered broilers were randomly divided into four groups (con, TS1, SE, TS1 + SE). TS1 and TS1 + SE group chickens were fed with 1.4 × 107 colony-forming units per mL of TS1 for 15 days and intraperitoneally injected with SE to establish the oxidative stress model. Then, we investigated whether TS1 protects the intestine of SE-treated broiler chickens using inflammatory cytokine gene expression analysis, stress protein quantification, antioxidant quantification, and histopathological analysis. RESULTS The TS1 + SE group showed lower MDA and higher GSH-Px, SOD, and T-AOC than the SE group. TS1 alleviated the effects of SE on intestinal villus length and crypt depth. Our results suggest that SE exposure increased the expression of inflammatory factors (IL-1β, IL-6, TNF-α, IL-4, and MCP-1), p38 MAPK, and PKCβ and decreased the expression of HSP60, HSP70, and HIF-1α, whereas TS1 alleviated these effects. CONCLUSIONS Bacillus pumilus TS1 alleviated oxidative stress damage caused by SE and attenuated the inflammatory response in broilers through MAPK/PKC regulation of HSPs/HIF-1α.
Collapse
Affiliation(s)
- Yinkun Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixin Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangshuang Wan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Wang B, Wu Q, Yu S, Lu Q, Lv X, Zhang M, Kan Y, Wang X, Zhu Y, Wang G, Wang Q. Host-derived bacillus spp. as probiotic additives for improved growth performance in broilers. Poult Sci 2022; 102:102240. [PMID: 36334472 PMCID: PMC9636475 DOI: 10.1016/j.psj.2022.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022] Open
Abstract
In recent years, the utilization of antibiotics in animal feed has been restricted, probiotics have been increasingly used to replace antibiotics in maintaining animal health. The aim of this study was to screen and evaluate probiotics with excellent probiotic potential from the gut of healthy goslings for clinical application. Thirteen strains of Bacillus (named AH-G201 to AH-G2013), including 2 strains of Bacillus subtilis (B. subtilis), 6 strains of Bacillus licheniformis (B. licheniformis) and 5 strains of Bacillus amyloliquefaciens (B. amyloliquefaciens), were isolated and identified. Then, acid and bile salts tolerance tests were performed to screen probiotics strains that could survive under different environments. The effects of screened probiotics on the growth of pathogenic Escherichia coli (E. coli) and Salmonella were assessed. Furthermore, we performed the drug resistance tests and safety tests in animals. The results showed that B. Subtilis AH-G201, B. licheniformis AH-G202 and AH-G204 exhibited higher gastrointestinal resistance under in vitro conditions, and showed a moderate level of resistance to the tested antibiotics. Importantly, AH-G201 and AH-G202 showed 24 to 60% inhibition rate against pathogenic E. coli and Salmonella. Moreover, the safety analysis of AH-G201 and AH-G202 suggested that the 2 probiotics strains have no adverse effects on body weight gain and feed intake in the broilers, and in addition, they have significantly improved growth performance. Finally, we analyzed effects of B. Subtilis AH-G201and B. licheniformis AH-G202 on growth performance, immune organ index and the feces microbes of broilers. The results showed that broilers fed with high doses (5 × 109 CFU/mL, for single strain) of a mixture of AH-G201 and AH-G202 exhibited good growth performance, and exhibited the greatest gain in spleen weight and the highest lactic acid bacteria counts. These findings indicate that the combined addition of B. Subtilis AH-G201 and B. licheniformis AH-G202 has the potential to replace antibiotics and to improve the growth performance of broilers.
Collapse
Affiliation(s)
- Bei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qiong Wu
- Animal Husbandry and Veterinary Service Centre of Jiujiang, Wuhu 241012, China
| | - Shengzu Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Lu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xuan Lv
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Miao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ying Kan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiqiang Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingqi Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China
| | - Qing Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China,Corresponding author:
| |
Collapse
|
9
|
Xiang Y, Wang L, Wei Y, Zhang H, Emu Q. Excessive manganese alters serum biochemical indices, induces histopathological alterations, and activates apoptosis in liver and cerebrum of Jianzhou Da'er goat (Capra hircus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109241. [PMID: 34752896 DOI: 10.1016/j.cbpc.2021.109241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 02/05/2023]
Abstract
The present study aimed to explore the toxic effects of excessive dietary Mn in livers and cerebrums of Jianzhou Da'er goat (Capra hircus). Three-month old goats were assigned into three groups: control group, fed on basal diet; Mn I group, fed on the basal diet mixed with MnCl2 (2.5 g/kg); Mn II group, fed on the basal diet mixed with MnCl2 (5 g/kg). Compared with the control group, the activities of serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and the concentrations of interferon-γ (IFN-γ) in Mn I and Mn II groups were significantly increased, but the concentrations of IgG in Mn I and Mn II groups were significantly decreased (p < 0.05). The activities of superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and the concentrations of glutathione (GSH) in Mn I and Mn II groups were significantly decreased, whereas the concentrations of malondialdehyde (MDA) in Mn I and Mn II groups were significantly increased in livers and cerebrums (p < 0.05). Moreover, the hepatocytes necrosed, inflammatory cells infiltrated, chromatin concentrated, mitochondrial cristae reduced in Mn I and Mn II groups. The nerve cells necrosed, blood vessels congested, inflammatory cells infiltrated, mitochondrial electron density and mitochondrial cristae decreased, and vacuolization increased in Mn I and Mn II groups. Furthermore, the mRNA expressions of tumor necrosis factor alpha (TNF-α), tumor necrosis factor receptor type 1 (TNFR1), fas-associated protein via a death domain (FADD), Bcl2-associated X (Bax), cysteinyl aspartate specific proteinase 3, 8, 9 (Caspase-3, 8, 9) in Mn I and Mn II groups were significantly increased (p < 0.05), but the mRNA expressions of B-cell lymphoma-2 (Bcl-2) in Mn I and Mn II groups were significantly decreased (p < 0.05) in livers. The mRNA expressions of Bcl-2, Bax, Caspase-3, 9, 7, 12 in Mn I and Mn II groups were significantly increased (p < 0.05), however, the ratio of Bcl-2/Bax in Mn I and Mn II groups was significantly decreased (p < 0.05) in cerebrums. In summary, our results provided new insights for better understanding the mechanisms of Mn toxicity in Capra hircus.
Collapse
Affiliation(s)
- Yi Xiang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Yong Wei
- Animal Science Academy of Sichuan Province, Chengdu 610066, China.
| | - Hua Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Quzhe Emu
- Animal Science Academy of Sichuan Province, Chengdu 610066, China
| |
Collapse
|
10
|
Hu J, Zuo J, Li J, Zhang Y, Ai X, Zhang J, Gong D, Sun D. Effects of secondary polyethylene microplastic exposure on crucian (Carassius carassius) growth, liver damage, and gut microbiome composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149736. [PMID: 34464809 DOI: 10.1016/j.scitotenv.2021.149736] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) have been found in the natural environment and even in the organs of fish, which is attracting worldwide attention. In this study, agricultural film was milled to simulate secondary polyethylene microplastics (PE-MPs) to evaluate their effect and toxicity on the growth, liver damage, and gut microbiome composition of crucian (Carassius carassius), a common freshwater fish, after 30 days of feed exposure. Three fish feed treatments with different PE-MPs concentrations, low, medium, and high, whose PE-MPs intake was 6.38, 12.18, and 22.33 mg MPs/fish/day, respectively, were used. The results indicated that crucian growth was promoted in the low and medium PE-MPs groups due to the increase in Firmicutes and decrease in Bacteroidetes, probably resulting in obesity and lipid accumulation, while the growth rate of crucians in the high PE-MPs group showed a clear downward trend. Severe liver damage was observed in PE-MPs-treated groups. Disordered liver tissue and necrosis of pancreatic acinar epithelial cells were observed in the medium and high PE-MPs groups compared with those of the control group. The gut microbiome composition of crucians showed significant alteration, and some harmful bacteria were found in the gut following PE-MPs exposure. Alpha diversity indices revealed that the diversity of the gut microbiome rose markedly in the low, medium, and high PE-MPs groups. This study suggests that MPs adversely affect crucian growth and health, with increased disease risk.
Collapse
Affiliation(s)
- Jiamin Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Jinbo Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiang Ai
- Qingke Zhilian Environmental Science Research Institute Co., Ltd, Xi'an 710000, China
| | - Jiwen Zhang
- Qingke Zhilian Environmental Science Research Institute Co., Ltd, Xi'an 710000, China
| | - Dahui Gong
- Qingke Zhilian Environmental Science Research Institute Co., Ltd, Xi'an 710000, China
| | - Dingming Sun
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710000, China
| |
Collapse
|