1
|
Caille C, Duhamel S, Latifi A, Rabouille S. Adaptive Responses of Cyanobacteria to Phosphate Limitation: A Focus on Marine Diazotrophs. Environ Microbiol 2024; 26:e70023. [PMID: 39714117 DOI: 10.1111/1462-2920.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024]
Abstract
Phosphorus is an essential component of numerous macromolecules and is vital for life. Its availability significantly influences primary production, particularly in oligotrophic environments. Marine diazotrophic cyanobacteria, which play key roles in biogeochemical cycles through nitrogen fixation (N2 fixation), have adapted to thrive in phosphate (Pi)-poor areas. However, the molecular mechanisms that facilitate their adaptation to such conditions remain incompletely understood. Bacteria have evolved various strategies to cope with Pi limitation, including detecting Pi availability, utilising high-affinity Pi transporters, and hydrolyzing dissolved organic phosphorus (DOP) with various enzymes. This review synthesises current knowledge regarding how cyanobacteria adapt to Pi scarcity, with particular emphasis on subtropical marine free-living diazotrophs and their ability to utilise diverse DOP molecules. Omics approaches, such as (meta)genomics and (meta)transcriptomics, reveal the resilience of marine diazotrophs in the face of Pi scarcity and highlight the need for further research into their molecular adaptive strategies. Adaptation to Pi limitation is often intertwined with the broader response of cyanobacteria to multiple limitations and stresses. This underscores the importance of understanding Pi adaptation to assess the ecological resilience of these crucial microorganisms in dynamic environments, particularly in the context of global climate change.
Collapse
Affiliation(s)
- Chloé Caille
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Banyuls sur mer, France
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne LCB, IMM, Marseille, France
| | - Solange Duhamel
- Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Amel Latifi
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne LCB, IMM, Marseille, France
| | - Sophie Rabouille
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Banyuls sur mer, France
| |
Collapse
|
2
|
Masuda T, Mareš J, Shiozaki T, Inomura K, Fujiwara A, Prášil O. Crocosphaera watsonii - A widespread nitrogen-fixing unicellular marine cyanobacterium. JOURNAL OF PHYCOLOGY 2024; 60:604-620. [PMID: 38551849 DOI: 10.1111/jpy.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/14/2023] [Accepted: 02/08/2024] [Indexed: 06/12/2024]
Abstract
Crocosphaera watsonii is a unicellular N2-fixing (diazotrophic) cyanobacterium observed in tropical and subtropical oligotrophic oceans. As a diazotroph, it can be a source of bioavailable nitrogen (N) to the microbial community in N-limited environments, and this may fuel primary production in the regions where it occurs. Crocosphaera watsonii has been the subject of intense study, both in culture and in field populations. Here, we summarize the current understanding of the phylogenetic and physiological diversity of C. watsonii, its distribution, and its ecological niche. Analysis of the relationships among the individual Crocosphaera species and related free-living and symbiotic lineages of diazotrophs based on the nifH gene have shown that the C. watsonii group holds a basal position and that its sequence is more similar to Rippkaea and Zehria than to other Crocosphaera species. This finding warrants further scrutiny to determine if the placement is related to a horizontal gene transfer event. Here, the nifH UCYN-B gene copy number from a recent synthesis effort was used as a proxy for relative C. watsonii abundance to examine patterns of C. watsonii distribution as a function of environmental factors, like iron and phosphorus concentration, and complimented with a synthesis of C. watsonii physiology. Furthermore, we have summarized the current knowledge of C. watsonii with regards to N2 fixation, photosynthesis, and quantitative modeling of physiology. Because N availability can limit primary production, C. watsonii is widely recognized for its importance to carbon and N cycling in ocean ecosystems, and we conclude this review by highlighting important topics for further research on this important species.
Collapse
Affiliation(s)
- Takako Masuda
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
- Japan Fisheries Research and Education Agency, Shiogama, Miyagi, Japan
| | - Jan Mareš
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
- Institute of Hydrobiology, Biology Centre, The Czech Academy of Sciences, České Budejovice, Czech Republic
| | - Takuhei Shiozaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Amane Fujiwara
- Research Institute for Global Change, JAMSTEC, Yokosuka, Japan
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
| |
Collapse
|
3
|
Yang N, Lin YA, Merkel CA, DeMers MA, Qu PP, Webb EA, Fu FX, Hutchins DA. Molecular mechanisms underlying iron and phosphorus co-limitation responses in the nitrogen-fixing cyanobacterium Crocosphaera. THE ISME JOURNAL 2022; 16:2702-2711. [PMID: 36008474 PMCID: PMC9666452 DOI: 10.1038/s41396-022-01307-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
In the nitrogen-limited subtropical gyres, diazotrophic cyanobacteria, including Crocosphaera, provide an essential ecosystem service by converting dinitrogen (N2) gas into ammonia to support primary production in these oligotrophic regimes. Natural gradients of phosphorus (P) and iron (Fe) availability in the low-latitude oceans constrain the biogeography and activity of diazotrophs with important implications for marine biogeochemical cycling. Much remains unknown regarding Crocosphaera's physiological and molecular responses to multiple nutrient limitations. We cultured C. watsonii under Fe, P, and Fe/P (co)-limiting scenarios to link cellular physiology with diel gene expression and observed unique physiological and transcriptional profiles for each treatment. Counterintuitively, reduced growth and N2 fixation resource use efficiencies (RUEs) for Fe or P under P limitation were alleviated under Fe/P co-limitation. Differential gene expression analyses show that Fe/P co-limited cells employ the same responses as single-nutrient limited cells that reduce cellular nutrient requirements and increase responsiveness to environmental change including smaller cell size, protein turnover (Fe-limited), and upregulation of environmental sense-and-respond systems (P-limited). Combined, these mechanisms enhance growth and RUEs in Fe/P co-limited cells. These findings are important to our understanding of nutrient controls on N2 fixation and the implications for primary productivity and microbial dynamics in a changing ocean.
Collapse
Affiliation(s)
- Nina Yang
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yu-An Lin
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Carlin A Merkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Michelle A DeMers
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ping-Ping Qu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric A Webb
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Fei-Xue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David A Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Masuda T, Inomura K, Kodama T, Shiozaki T, Kitajima S, Armin G, Matsui T, Suzuki K, Takeda S, Sato M, Prášil O, Furuya K. Crocosphaera as a Major Consumer of Fixed Nitrogen. Microbiol Spectr 2022; 10:e0217721. [PMID: 35770981 PMCID: PMC9431459 DOI: 10.1128/spectrum.02177-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/05/2022] [Indexed: 11/23/2022] Open
Abstract
Crocosphaera watsonii (hereafter referred to as Crocosphaera) is a key nitrogen (N) fixer in the ocean, but its ability to consume combined-N sources is still unclear. Using in situ microcosm incubations with an ecological model, we show that Crocosphaera has high competitive capability both under low and moderately high combined-N concentrations. In field incubations, Crocosphaera accounted for the highest consumption of ammonium and nitrate, followed by picoeukaryotes. The model analysis shows that cells have a high ammonium uptake rate (~7 mol N [mol N]-1 d-1 at the maximum), which allows them to compete against picoeukaryotes and nondiazotrophic cyanobacteria when combined N is sufficiently available. Even when combined N is depleted, their capability of nitrogen fixation allows higher growth rates compared to potential competitors. These results suggest the high fitness of Crocosphaera in combined-N limiting, oligotrophic oceans heightening its potential significance in its ecosystem and in biogeochemical cycling. IMPORTANCE Crocosphaera watsonii is as a key nitrogen (N) supplier in marine ecosystems, and it has been estimated to contribute up to half of oceanic N2 fixation. Conversely, a recent study reported that Crocosphaera can assimilate combined N and proposed that unicellular diazotrophs can be competitors with non-N2 fixing phytoplankton for combined N. Despite its importance in nitrogen cycling, the methods by which Crocosphaera compete are not currently fully understood. Here, we present a new role of Crocosphaera as a combined-N consumer: a competitor against nondiazotrophic phytoplankton for combined N. In this study, we combined in situ microcosm experiments and an ecosystem model to quantitatively evaluate the combined-N consumption by Crocosphaera and other non-N2 fixing phytoplankton. Our results suggest the high fitness of Crocosphaera in combined-N limiting, oligotrophic oceans and, thus, heightens its potential significance in its ecosystem and in biogeochemical cycling.
Collapse
Affiliation(s)
- Takako Masuda
- Department of Aquatic Bioscience, The University of Tokyo, Tokyo, Japan
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Taketoshi Kodama
- Department of Aquatic Bioscience, The University of Tokyo, Tokyo, Japan
| | - Takuhei Shiozaki
- Department of Aquatic Bioscience, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kitajima
- Department of Aquatic Bioscience, The University of Tokyo, Tokyo, Japan
| | - Gabrielle Armin
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Takato Matsui
- Graduate School of Environmental Science/Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Koji Suzuki
- Graduate School of Environmental Science/Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Shigenobu Takeda
- Department of Aquatic Bioscience, The University of Tokyo, Tokyo, Japan
| | - Mitsuhide Sato
- Department of Aquatic Bioscience, The University of Tokyo, Tokyo, Japan
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
| | - Ken Furuya
- Department of Aquatic Bioscience, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Rabouille S, Tournier L, Duhamel S, Claquin P, Crispi O, Talec A, Landolfi A, Oschlies A. Organic Phosphorus Scavenging Supports Efficient Growth of Diazotrophic Cyanobacteria Under Phosphate Depletion. Front Microbiol 2022; 13:848647. [PMID: 35401448 PMCID: PMC8990761 DOI: 10.3389/fmicb.2022.848647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
Considering the reported significant diazotrophic activities in open-ocean regions where primary production is strongly limited by phosphate, we explored the ability of diazotrophs to use other sources of phosphorus to alleviate the phosphate depletion. We tested the actual efficiency of the open-ocean, N2-fixer Crocosphaera watsonii to grow on organic phosphorus as the sole P source, and observed how the P source affects the cellular C, N, and P composition. We obtained equivalent growth efficiencies on AMP and DL-α-glycerophosphate as compared with identical cultures grown on phosphate, and survival of the population on phytic acid. Our results show that Crocosphaera cannot use all phosphomonoesters with the same efficiency, but it can grow without phosphate, provided that usable DOP and sufficient light energy are available. Also, results point out that organic phosphorus uptake is not proportional to alkaline phosphatase activity, demonstrating that the latter is not a suitable proxy to estimate DOP-based growth yields of organisms, whether in culture experiments or in the natural environment. The growth parameters obtained, as a function of the P source, will be critical to improve and calibrate mathematical models of diazotrophic growth and the distribution of nitrogen fixation in the global ocean.
Collapse
Affiliation(s)
- Sophie Rabouille
- Laboratoire d'Océanographie de Villefranche (LOV), CNRS, Sorbonne Université, Villefranche-sur-Mer, France.,Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, Banyuls-sur-Mer, France
| | - Lauralie Tournier
- Laboratoire d'Océanographie de Villefranche (LOV), CNRS, Sorbonne Université, Villefranche-sur-Mer, France
| | - Solange Duhamel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Pascal Claquin
- UMR BOREA (CNRS 8067), MNHN, IRD (207), Normandie Université, Université de Caen Normandie, CREC, Luc-sur-Mer, France
| | - Olivier Crispi
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, Banyuls-sur-Mer, France
| | - Amélie Talec
- Laboratoire d'Océanographie de Villefranche (LOV), CNRS, Sorbonne Université, Villefranche-sur-Mer, France
| | - Angela Landolfi
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,CNR ISMAR, Rome, Italy
| | | |
Collapse
|
6
|
Qin X, Shi X, Gao Y, Dai X, Ou L, Guan W, Lu S, Cen J, Qi Y. Alkaline phosphatase activity during a phosphate replete dinoflagellate bloom caused by Prorocentrum obtusidens. HARMFUL ALGAE 2021; 103:101979. [PMID: 33980429 DOI: 10.1016/j.hal.2021.101979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 01/03/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Prorocentrum obtusidens Schiller (formerly P. donghaiense Lu), a harmful algal species common in the East China Sea (ECS), often thrives with the depletion of phosphate. Three cruises in the spring of 2013 sampled an entire P. obtusidens bloom process to investigate the dynamics of alkaline phosphatase activity (APA) and phosphorus (P) status of the bloom species using both bulk and cell-specific assays. Unlike previous studies, the bloom of P. obtusidens occurred in a phosphate replete environment. Very high APA, with an average of 76.62 ± 90.24 nmol L-1 h-1, was observed during the early-bloom phase, a value comparable to that in low phosphate environments. The alkaline phosphatase (AP) hydrolytic kinetics also suggested a more efficient AP system with a lower half-saturation constant (Ks), but higher maximum potential hydrolytic velocity (Vmax) in this period. The APA decreased significantly with an average of 24.98 ± 30.98 nmol L-1 h-1 when the bloom reached its peak. The lack of a correlation between dissolved inorganic phosphate (DIP) or dissolved organic phosphate (DOP) concentration and APA suggested that the APA was regulated by the internal P growth demand, rather than the external P availability during the phosphate replete P. obtusidens bloom. These findings facilitate an understanding of the P. obtusidens acclimation strategy with respect to P variations in terms of AP expression during blooms in the ECS.
Collapse
Affiliation(s)
- Xianling Qin
- School of Life Sciences, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiaoyong Shi
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China; National Marine Hazard Mitigation Service, Beijing, China
| | - Yahui Gao
- School of Life Sciences, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xinfeng Dai
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Linjian Ou
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China.
| | - Weibing Guan
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Songhui Lu
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China.
| | - Jingyi Cen
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Yuzao Qi
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Genomic Characteristics of a Novel Species of Ammonia-Oxidizing Archaea from the Jiulong River Estuary. Appl Environ Microbiol 2020; 86:AEM.00736-20. [PMID: 32631866 DOI: 10.1128/aem.00736-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/30/2020] [Indexed: 11/20/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) are ubiquitous in diverse ecosystems and play a pivotal role in global nitrogen and carbon cycling. Although AOA diversity and distribution are widely studied, mainly based on the amoA (alpha subunit of ammonia monooxygenase) genotypes, only limited investigations have addressed the relationship between AOA genetic adaptation, metabolic features, and ecological niches, especially in estuaries. Here, we describe the AOA communities along the Jiulong River estuary in southern China. Nine high-quality AOA metagenome-assembled genomes (MAGs) were obtained by metagenomics. Five of the MAGs are proposed to constitute a new species, "Candidatus Nitrosopumilus aestuariumsis" sp. nov., based on the phylogenies of the 16S and 23S rRNA genes and concatenated ribosomal proteins, as well as the average amino acid identity. Comparative genomic analysis revealed unique features of the new species, including a high number of genes related to diverse carbohydrate-active enzymes, phosphatases, heavy-metal transport systems, flagellation, and chemotaxis. These genes may be crucial for AOA adaptation to the eutrophic and heavy-metal-contaminated Jiulong River estuary. The uncovered detailed genomic characteristics of the new estuarine AOA species highlight AOA contributions to ammonia oxidation in the Jiulong River estuary.IMPORTANCE In this study, AOA communities along a river in southern China were characterized, and metagenome-assembled genomes (MAGs) of a novel AOA clade were also obtained. Based on the characterization of AOA genomes, the study suggests adaptation of the novel AOAs to estuarine environments, providing new information on the ecology of estuarine AOA and the nitrogen cycle in contaminated estuarine environments.
Collapse
|
8
|
Liu J, Zhou L, Ke Z, Li G, Tan Y. Phosphorus deficiency induced by aluminum in a marine nitrogen-fixing cyanobacterium Crocosphaera watsonii WH0003. CHEMOSPHERE 2020; 246:125641. [PMID: 31901529 DOI: 10.1016/j.chemosphere.2019.125641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/19/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Large amounts of aluminum (Al) enter the ocean through atmospheric dust deposition and river runoffs. However, few studies have reported the effects of Al on marine phytoplankton, especially nitrogen-fixing cyanobacteria. By using the isotope tracer method and quantitative reverse transcription PCR (RT-qPCR), we examined the physiological effect of Al (0.2, 2 and 20 μM) on the unicellular marine nitrogen-fixing cyanobacterium Crocosphaera watsonii in Aquil* medium. We show that Al has an inhibitory physiological effect on C. watsonii, including changes in growth rate, nitrogen fixation rate, carbon fixation rate, cell size, fast rise chlorophyll fluorescence kinetics, cellular photosynthetic pigment and C/N/P content, the same as that of the phosphorus deficient treatment. The ratio of cellular elements C:N:P showed that phosphorus was deficient in the cell of C. watsonii after Al treatment (2 and 20 μM). In addition, Al stimulated the expression of phosphorus-related genes pstS, phoH, phoU, ppK and ppX in C. watsonii. All these results suggest that Al-treated C. watsonii is phosphorus-limited, and that the phosphorus deficiency induced by Al may be one mechanism behind aluminum's toxicity.
Collapse
Affiliation(s)
- Jiaxing Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Linbin Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhixin Ke
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yehui Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Ou L, Qin X, Shi X, Feng Q, Zhang S, Lu S, Qi Y. Alkaline phosphatase activities and regulation in three harmful Prorocentrum species from the coastal waters of the East China Sea. MICROBIAL ECOLOGY 2020; 79:459-471. [PMID: 31267157 DOI: 10.1007/s00248-019-01399-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
Harmful blooms of Prorocentrum donghaiense occur annually in the phosphorus-scarce coastal waters of the East China Sea (ECS). The enzymatic activities of alkaline phosphatase (AP) and its regulation by external phosphorus were studied during a P. donghaiense bloom in this area. The AP characteristics of P. donghaiense was further compared with Prorocentrum minimum and Prorocentrum micans in monocultures with both bulk and single-cell enzyme-labeled fluorescence AP assays. Concentrations of dissolved inorganic phosphorus (DIP) varied between 0.04 and 0.73 μmol l-1, with more than half recording stations registering concentrations below 0.10 μmol l-1. Concentrations of dissolved organic phosphorus (DOP) were comparable or even higher than those of DIP. P. donghaiense suffered phosphorus stress and expressed abundant AP, especially when DIP was lower than 0.10 μmol l-1. The AP activities showed a negative correlation with DIP but a positive correlation with DOP. The AP activities were also regulated by internal phosphorus pool. The sharp increase in AP activities was observed until cellular phosphorus was exhausted. Most AP of P. donghaiense was located on the cell surface and some were released into the water with time. Compared with P. minimum and P. micans, P. donghaiense showed a higher AP affinity for organic phosphorus substrates, a more efficient and energy-saving AP expression quantity as a response to phosphorus deficiency. The unique AP characteristic of P. donghaiense suggests that it benefits from the efficient utilization of DOP, and outcompete other species in the phosphorus-scarce ECS.
Collapse
Affiliation(s)
- Linjian Ou
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Xianling Qin
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China
- Guangxi Key Laboratory of Marine Environmental Science, and Guangxi Academy of Sciences, Nanning, 530007, People's Republic of China
| | - Xiaoyong Shi
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
- National Marine Hazard Mitigation Service, Beijing, 100194, People's Republic of China
| | - Qingliang Feng
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shuwen Zhang
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Songhui Lu
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Yuzao Qi
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
10
|
Pereira N, Shilova IN, Zehr JP. Use of the high-affinity phosphate transporter gene, pstS, as an indicator for phosphorus stress in the marine diazotroph Crocosphaera watsonii (Chroococcales, Cyanobacteria). JOURNAL OF PHYCOLOGY 2019; 55:752-761. [PMID: 30929262 DOI: 10.1111/jpy.12863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The marine diazotroph Crocosphaera watsonii provides fixed carbon (C) and nitrogen (N) to open-ocean regimes, where nutrient deficiency controls productivity. The growth of Crocosphaera can be limited by low phosphorus (P) concentrations in these oligotrophic environments. Biomarkers such as the high-affinity ABC transporter phosphate-binding gene, pstS, are commonly used to monitor when such organisms are under P stress; however, transcriptional regulation of these markers is often complex and not well-understood. In this study, we interrogated changes in pstS transcript levels in C. watsonii cells under P starvation, and in response to added dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP), and changing light levels. We observed elevated relative pstS transcript levels in C. watsonii WH8501 at DIP concentrations below 60 and above 20 nmol · L-1 . Transcript levels were suppressed by both inorganic and bioavailable organic phosphorus; however, the P stress response was more sensitive to DIP than DOP sources. Increasing light intensity resulted in increased relative pstS transcript abundances independently of low external P, and seemed to exacerbate the physiological effects of P stress. The variable response to different P compounds and rapid and transient influence of high light on pstS transcript abundances suggests that pstS is an indicator of internal P status in Crocosphaera.
Collapse
Affiliation(s)
- Nicole Pereira
- Ocean Sciences Department, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
- Second Genome, 341 Allerton Avenue, South San Francisco, California, 94080, USA
| | - Irina N Shilova
- Ocean Sciences Department, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
- Second Genome, 341 Allerton Avenue, South San Francisco, California, 94080, USA
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| |
Collapse
|
11
|
Harke MJ, Frischkorn KR, Haley ST, Aylward FO, Zehr JP, Dyhrman ST. Periodic and coordinated gene expression between a diazotroph and its diatom host. ISME JOURNAL 2018; 13:118-131. [PMID: 30116042 DOI: 10.1038/s41396-018-0262-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/28/2018] [Accepted: 07/28/2018] [Indexed: 01/30/2023]
Abstract
In the surface ocean, light fuels photosynthetic carbon fixation of phytoplankton, playing a critical role in ecosystem processes including carbon export to the deep sea. In oligotrophic oceans, diatom-diazotroph associations (DDAs) play a keystone role in ecosystem function because diazotrophs can provide otherwise scarce biologically available nitrogen to the diatom host, fueling growth and subsequent carbon sequestration. Despite their importance, relatively little is known about the nature of these associations in situ. Here we used metatranscriptomic sequencing of surface samples from the North Pacific Subtropical Gyre (NPSG) to reconstruct patterns of gene expression for the diazotrophic symbiont Richelia and we examined how these patterns were integrated with those of the diatom host over day-night transitions. Richelia exhibited significant diel signals for genes related to photosynthesis, N2 fixation, and resource acquisition, among other processes. N2 fixation genes were significantly co-expressed with host nitrogen uptake and metabolism, as well as potential genes involved in carbon transport, which may underpin the exchange of nitrogen and carbon within this association. Patterns of expression suggested cell division was integrated between the host and symbiont across the diel cycle. Collectively these data suggest that symbiont-host physiological ecology is strongly interconnected in the NPSG.
Collapse
Affiliation(s)
- Matthew J Harke
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA
| | - Kyle R Frischkorn
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA. .,Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|