1
|
Pavlova N, Traykovska M, Penchovsky R. Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development. Antibiotics (Basel) 2023; 12:1607. [PMID: 37998809 PMCID: PMC10668854 DOI: 10.3390/antibiotics12111607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial drug resistance has emerged as a significant challenge in contemporary medicine due to the proliferation of numerous bacterial strains resistant to all existing antibiotics. Meanwhile, riboswitches have emerged as promising targets for discovering antibacterial drugs. Riboswitches are regulatory elements in certain bacterial mRNAs that can bind to specific molecules and control gene expression via transcriptional termination, prevention of translation, or mRNA destabilization. By targeting riboswitches, we aim to develop innovative strategies to combat antibiotic-resistant bacteria and enhance the efficacy of antibacterial treatments. This convergence of challenges and opportunities underscores the ongoing quest to revolutionize medical approaches against evolving bacterial threats. For the first time, this innovative review describes the rational design and applications of chimeric antisense oligonucleotides as antibacterial agents targeting four riboswitches selected based on genome-wide bioinformatic analyses. The antisense oligonucleotides are coupled with the cell-penetrating oligopeptide pVEC, which penetrates Gram-positive and Gram-negative bacteria and specifically targets glmS, FMN, TPP, and SAM-I riboswitches in Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. The average antibiotic dosage of antisense oligonucleotides that inhibits 80% of bacterial growth is around 700 nM (4.5 μg/mL). Antisense oligonucleotides do not exhibit toxicity in human cell lines at this concentration. The results demonstrate that these riboswitches are suitable targets for antibacterial drug development using antisense oligonucleotide technology. The approach is fully rational because selecting suitable riboswitch targets and designing ASOs that target them are based on predefined criteria. The approach can be used to develop narrow or broad-spectrum antibiotics against multidrug-resistant bacterial strains for a short time. The approach is easily adaptive to new resistance using targeting NGS technology.
Collapse
Affiliation(s)
| | | | - Robert Penchovsky
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
2
|
Marton Menendez A, Nesbitt DJ. Ionic Cooperativity between Lysine and Potassium in the Lysine Riboswitch: Single-Molecule Kinetic and Thermodynamic Studies. J Phys Chem B 2023; 127:2430-2440. [PMID: 36916791 DOI: 10.1021/acs.jpcb.3c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Functionality in many biological systems, including proteins and nucleic acid structures, including protein and nucleic acid riboswitch structures, can depend on cooperative kinetic behavior between multiple small molecule ligands. In this work, single-molecule FRET data on the Bacillus subtilis lysine riboswitch reveals that affinity for the cognate lysine ligand increases significantly with K+, providing evidence for synergism between lysine/K+ binding to the aptamer and successful folding of the riboswitch. To describe/interpret this more complex kinetic scenario, we explore the conventional 4-state ("square") model for aptamer binding as a function of K+. Extension into this additional dimension generates a novel "cube" model for riboswitch folding dynamics with respect to lysine/K+ binding, revealing that riboswitch folding (kfold) and unfolding (kunfold) rate constants increase and decrease dramatically with K+, respectively. Furthermore, temperature-dependent single-molecule kinetic studies indicate that the presence of K+ entropically enhances the transition state barrier to folding but partially compensates for this by increasing the overall exothermicity for lysine binding. We rationalize this behavior as evidence that K+ facilitates hydrogen bonding between the negatively charged carboxyl group of lysine and the RNA, increasing structural rigidity and lowering entropy in the binding pocket. Finally, we explore the effects of cation size with Na+ and Cs+ studies to demonstrate that K+ is optimally suited for bridging interactions between lysine and the riboswitch aptamer domain. Regulation of lysine production and transport, dictated by the riboswitch's ability to recognize and bind lysine, is therefore intimately tied to the presence of K+ in the binding pocket and is strongly modulated by local cation conditions. The results suggest an increase in lysine riboswitch functionality by sensitivity to additional species in the cellular riboswitch environment.
Collapse
Affiliation(s)
- Andrea Marton Menendez
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
3
|
Llavero‐Pasquina M, Geisler K, Holzer A, Mehrshahi P, Mendoza‐Ochoa GI, Newsad SA, Davey MP, Smith AG. Thiamine metabolism genes in diatoms are not regulated by thiamine despite the presence of predicted riboswitches. THE NEW PHYTOLOGIST 2022; 235:1853-1867. [PMID: 35653609 PMCID: PMC9544697 DOI: 10.1111/nph.18296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/20/2022] [Indexed: 05/17/2023]
Abstract
Thiamine pyrophosphate (TPP), an essential co-factor for all species, is biosynthesised through a metabolically expensive pathway regulated by TPP riboswitches in bacteria, fungi, plants and green algae. Diatoms are microalgae responsible for c. 20% of global primary production. They have been predicted to contain TPP aptamers in the 3'UTR of some thiamine metabolism-related genes, but little information is known about their function and regulation. We used bioinformatics, antimetabolite growth assays, RT-qPCR, targeted mutagenesis and reporter constructs to test whether the predicted TPP riboswitches respond to thiamine supplementation in diatoms. Gene editing was used to investigate the functions of the genes with associated TPP riboswitches in Phaeodactylum tricornutum. We found that thiamine-related genes with putative TPP aptamers are not responsive to supplementation with thiamine or its precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), and targeted mutation of the TPP aptamer in the THIC gene encoding HMP-P synthase does not deregulate thiamine biosynthesis in P. tricornutum. Through genome editing we established that PtTHIC is essential for thiamine biosynthesis and another gene, PtSSSP, is necessary for thiamine uptake. Our results highlight the importance of experimentally testing bioinformatic aptamer predictions and provide new insights into the thiamine metabolism shaping the structure of marine microbial communities with global biogeochemical importance.
Collapse
Affiliation(s)
| | - Katrin Geisler
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Andre Holzer
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Payam Mehrshahi
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | | | - Shelby A. Newsad
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Matthew P. Davey
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
- Scottish Association of Marine SciencesObanPA37 1QAUK
| | - Alison G. Smith
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| |
Collapse
|
4
|
Marton Menendez A, Nesbitt DJ. Lysine-Dependent Entropy Effects in the B. subtilis Lysine Riboswitch: Insights from Single-Molecule Thermodynamic Studies. J Phys Chem B 2021; 126:69-79. [PMID: 34958583 DOI: 10.1021/acs.jpcb.1c07833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Riboswitches play an important role in RNA-based sensing/gene regulation control for many bacteria. In particular, the accessibility of multiple conformational states at physiological temperatures allows riboswitches to selectively bind a cognate ligand in the aptamer domain, which triggers secondary structural changes in the expression platform, and thereby "switching" between on or off transcriptional or translational states for the downstream RNA. The present work exploits temperature-controlled, single-molecule total internal reflection fluorescence (TIRF) microscopy to study the thermodynamic landscape of such ligand binding/folding processes, specifically for the Bacillus subtilis lysine riboswitch. The results confirm that the riboswitch folds via an induced-fit (IF) mechanism, in which cognate lysine ligand first binds to the riboswitch before structural rearrangement takes place. The transition state to folding is found to be enthalpically favored (ΔHfold‡ < 0), yet with a free-energy barrier that is predominantly entropic (-TΔSfold‡ > 0), which results in folding (unfolding) rate constants strongly dependent (independent) of lysine concentration. Analysis of the single-molecule kinetic "trajectories" reveals this rate constant dependence of kfold on lysine to be predominantly entropic in nature, with the additional lysine conferring preferential advantage to the folding process by the presence of ligands correctly oriented with respect to the riboswitch platform. By way of contrast, van't Hoff analysis reveals enthalpic contributions to the overall folding thermodynamics (ΔH0) to be surprisingly constant and robustly independent of lysine concentration. The results demonstrate the crucial role of hydrogen bonding between the ligand and riboswitch platform but with only a relatively modest fraction (45%) of the overall enthalpy change needed to access the transition state and initiate transcriptional switching.
Collapse
Affiliation(s)
- Andrea Marton Menendez
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
5
|
Mehrshahi P, Nguyen GTDT, Gorchs Rovira A, Sayer A, Llavero-Pasquina M, Lim Huei Sin M, Medcalf EJ, Mendoza-Ochoa GI, Scaife MA, Smith AG. Development of Novel Riboswitches for Synthetic Biology in the Green Alga Chlamydomonas. ACS Synth Biol 2020; 9:1406-1417. [PMID: 32496044 PMCID: PMC7309327 DOI: 10.1021/acssynbio.0c00082] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Riboswitches are RNA regulatory elements that bind specific ligands to control gene expression. Because of their modular composition, where a ligand-sensing aptamer domain is combined with an expression platform, riboswitches offer unique tools for synthetic biology applications. Here we took a mutational approach to determine functionally important nucleotide residues in the thiamine pyrophosphate (TPP) riboswitch in the THI4 gene of the model alga Chlamydomonas reinhardtii, allowing us to carry out aptamer swap using THIC aptamers from Chlamydomonas and Arabidopsis thaliana. These chimeric riboswitches displayed a distinct specificity and dynamic range of responses to different ligands. Our studies demonstrate ease of assembly as 5'UTR DNA parts, predictability of output, and utility for controlled production of a high-value compound in Chlamydomonas. The simplicity of riboswitch incorporation in current design platforms will facilitate the generation of genetic circuits to advance synthetic biology and metabolic engineering of microalgae.
Collapse
Affiliation(s)
- Payam Mehrshahi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Ginnie Trinh D. T. Nguyen
- Glanbia Performance Nutrition Canada Inc., 3500 Lacey Road, Suite 1200, Downers Grove, Illinois 60515, United States
| | - Aleix Gorchs Rovira
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Andrew Sayer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Marcel Llavero-Pasquina
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Michelle Lim Huei Sin
- John Swire & Sons (H.K.) Ltd. 33/F One Pacific Place, 88 Queensway, Hong Kong, China
| | - Elliot J. Medcalf
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | | | - Mark A. Scaife
- Mara Renewables Corporation, 101A Research Drive, Dartmouth, Nova Scotia B2Y 4T6, Canada
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| |
Collapse
|
6
|
Aptamers as a novel diagnostic and therapeutic tool and their potential use in parasitology. ACTA ACUST UNITED AC 2020; 40:148-165. [PMID: 32463617 PMCID: PMC7449109 DOI: 10.7705/biomedica.4765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 02/07/2023]
Abstract
Los aptámeros son secuencias de ADN o ARN de cadena sencilla que adoptan la forma de estructuras tridimensionales únicas, lo cual les permite reconocer un blanco específico con gran afinidad. Sus usos potenciales abarcan, entre otros, el diagnóstico de enfermedades, el desarrollo de nuevos agentes terapéuticos, la detección de riesgos alimentarios, la producción de biosensores, la detección de toxinas, el transporte de fármacos en el organismo y la señalización de nanopartículas. El pegaptanib es el único aptámero aprobado para uso comercial por la Food and Drug Administration (FDA). Otros aptámeros para el tratamiento de enfermedades están en la fase clínica de desarrollo. En parasitología, se destacan los estudios que se vienen realizando en Leishmania spp., con la obtención de aptámeros que reconocen la proteína de unión a poliA (LiPABP) y que pueden tener potencial utilidad en la investigación, el diagnóstico y el tratamiento de la leishmaniasis. En cuanto a la malaria, se han obtenido aptámeros que permiten identificar eritrocitos infectados e inhiben la formación de rosetas, y otros que prometen ser alternativas para el diagnóstico al detectar de forma específica la proteína lactato deshidrogenasa (PfLDH). Para Cryptosporidium parvuum se han seleccionado aptámeros que detectan ooquistes a partir de alimentos o aguas contaminadas. Para Entamoeba histolytica se han aislado dos aptámeros llamados C4 y C5, que inhiben la proliferación in vitro de los trofozoítos y tienen potencial terapéutico. Los aptámeros contra Trypanosoma cruzi inhiben la invasión de células LLC-MK2 (de riñón de mono) en un 50 a 70 % y aquellos contra T. brucei transportan moléculas tóxicas al lisosoma parasitario como una novedosa estrategia terapéutica. Los datos recopilados en esta revisión destacan los aptámeros como una alternativa para la investigación, el diagnóstico y el tratamiento contra parásitos de interés nacional.
Collapse
|
7
|
Hu G, Li H, Xu S, Wang J. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch. Int J Mol Sci 2020; 21:ijms21061926. [PMID: 32168940 PMCID: PMC7139962 DOI: 10.3390/ijms21061926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Riboswitches are naturally occurring RNA aptamers that control the expression of essential bacterial genes by binding to specific small molecules. The binding with both high affinity and specificity induces conformational changes. Thus, riboswitches were proposed as a possible molecular target for developing antibiotics and chemical tools. The adenine riboswitch can bind not only to purine analogues but also to pyrimidine analogues. Here, long molecular dynamics (MD) simulations and molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) computational methodologies were carried out to show the differences in the binding model and the conformational changes upon five ligands binding. The binding free energies of the guanine riboswitch aptamer with C74U mutation complexes were compared to the binding free energies of the adenine riboswitch (AR) aptamer complexes. The calculated results are in agreement with the experimental data. The differences for the same ligand binding to two different aptamers are related to the electrostatic contribution. Binding dynamical analysis suggests a flexible binding pocket for the pyrimidine ligand in comparison with the purine ligand. The 18 μs of MD simulations in total indicate that both ligand-unbound and ligand-bound aptamers transfer their conformation between open and closed states. The ligand binding obviously affects the conformational change. The conformational states of the aptamer are associated with the distance between the mass center of two key nucleotides (U51 and A52) and the mass center of the other two key nucleotides (C74 and C75). The results suggest that the dynamical character of the binding pocket would affect its biofunction. To design new ligands of the adenine riboswitch, it is recommended to consider the binding affinities of the ligand and the conformational change of the ligand binding pocket.
Collapse
Affiliation(s)
- Guodong Hu
- Correspondence: (G.H.); (J.W.); Tel.: +86-534-8987536 (G.H.); +86-534-8985933 (J.W.)
| | | | | | - Jihua Wang
- Correspondence: (G.H.); (J.W.); Tel.: +86-534-8987536 (G.H.); +86-534-8985933 (J.W.)
| |
Collapse
|
8
|
Helliwell KE. The roles of B vitamins in phytoplankton nutrition: new perspectives and prospects. THE NEW PHYTOLOGIST 2017; 216:62-68. [PMID: 28656633 DOI: 10.1111/nph.14669] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
Contents 62 I. 62 II. 63 III. 63 IV. 66 V. 66 VI. 67 67 References 67 SUMMARY: B vitamins play essential roles in central metabolism. These organic water-soluble molecules act as, or as part of, coenzymes within the cell. Unlike land plants, many eukaryotic algae are auxotrophic for certain B vitamins. Recent progress in algal genetic resources and environmental chemistry have promoted a renewal of interest in the role of vitamins in governing phytoplankton dynamics, and illuminated amazing versatility in phytoplankton vitamin metabolism. Accumulating evidence demonstrates metabolic complexity in the production and bioavailability of different vitamin forms, coupled with specialized acquisition strategies to salvage and remodel vitamin precursors. Here, I describe recent advances and discuss how they redefine our view of the way in which vitamins are cycled in aquatic ecosystems and their importance in structuring phytoplankton communities.
Collapse
Affiliation(s)
- Katherine E Helliwell
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
9
|
Zhang JM, Jiang C, Ye W, Luo R, Chen HF. Allosteric pathways in tetrahydrofolate sensing riboswitch with dynamics correlation network. MOLECULAR BIOSYSTEMS 2017; 13:156-164. [PMID: 27841427 DOI: 10.1039/c6mb00630b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Riboswitches are cis-acting genetic control elements. Due to their fundamental importance in bacteria gene regulation, they have been proposed as antibacterial drug targets. Tetrahydrofolate (THF) is an essential cofactor of one-carbon transfer reactions and downregulates the expression of downstream genes. However, information on how to transfer from the binding site of THF to the expression platform is still unavailable. Herein, a nucleotide/nucleotide dynamics correlation network based on an all-atom molecular dynamic simulation was used to reveal the regulation mechanism of a THF-sensing riboswitch. Shortest pathway analysis based on the network illustrates that there is an allosteric pathway through the P2 helix to the pseudoknot, then to the P1 helix in the THF-riboswitch. Thus the hypothesis of "THF-binding induced allosteric switching" was proposed and evaluated using THF and pseudoknot weakened experiments. Furthermore, a possible allosteric pathway of C30-C31-G33-A34-G35-G36-G37-A38-G48-G47-U46-A90-U91-C92-G93-C94-G95-C96 was identified and confirmed through the perturbation of the network. The proposed allosteric mechanism and the underlying allosteric pathway provide fundamental insights for the regulation of THF sensing riboswitches.
Collapse
Affiliation(s)
- Jin-Mai Zhang
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Cheng Jiang
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wei Ye
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry and Biomedical Engineering, University of California, Irvine, CA 92697-3900, USA.
| | - Hai-Feng Chen
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China. and Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 200235, China
| |
Collapse
|
10
|
Hu G, Ma A, Wang J. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations. J Chem Inf Model 2017; 57:918-928. [PMID: 28345904 DOI: 10.1021/acs.jcim.7b00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Riboswitches regulate gene expression through direct and specific interactions with small metabolite molecules. Binding of a ligand to its RNA target is high selectivity and affinity and induces conformational changes of the RNA's secondary and tertiary structure. The structural difference of two purine riboswitches aptamers is caused by only one single mutation, where cytosine 74 in the guanine riboswitch is corresponding to a uracil 74 in adenine riboswitch. Here we employed molecular dynamics (MD) simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and thermodynamic integration computational methodologies to evaluate the energetic and conformational changes of ligands binding to purine riboswitches. The snapshots used in MM-PBSA calculation were extracted from ten 50 ns MD simulation trajectories for each complex. These free energy results are in consistent with the experimental data and rationalize the selectivity of the riboswitches for different ligands. In particular, it is found that the loss in binding free energy upon mutation is mainly electrostatic in guanine (GUA) and riboswitch complex. Furthermore, new hydrogen bonds are found in mutated complexes. To reveal the conformational properties of guanine riboswitch, we performed a total of 6 μs MD simulations in both the presence and the absence of the ligand GUA. The MD simulations suggest that the conformation of guanine riboswitch depends on the distance of two groups in the binding pocket of ligand. The conformation is in a close conformation when U51-A52 is close to C74-U75.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University , Dezhou 253023, China
| | - Aijing Ma
- Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University , Dezhou 253023, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University , Dezhou 253023, China
| |
Collapse
|