1
|
Huanel OR, Montecinos AE, Sepúlveda-Espinoza F, Guillemin ML. Impact of persistent barrier to gene flow and catastrophic events on red algae evolutionary history along the Chilean coast. Front Genet 2024; 15:1336427. [PMID: 38525243 PMCID: PMC10957783 DOI: 10.3389/fgene.2024.1336427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Historical vicariance events, linked to the existence of stable physical barriers to gene flow, generate concordant genetic breaks in co-distributed species while stochastic processes (e.g., costal uplift) could cause species-specific genetic breaks as a result of local strong demographic bottlenecks or extinction. In Chile, previous studies show that the area of the 30°S-33°S could correspond to a stable barrier to gene flow that have affected the genetic structure of various algae and marine invertebrates. Here we sequenced two organellar genes (COI and rbcL) in four taxonomically accepted co-distributed red seaweeds species characterized by a low dispersal potential: Mazzaella laminarioides, M. membranacea, Asterfilopsis disciplinalis, and Ahnfeltiopsis vermicularis. Our results revealed the existence of ten strongly differentiated linages in the taxa studied. Strong genetic breaks, concordant in both space and time (divergence estimated to have occurred some 2.9-12.4 million years ago), were observed between taxa distributed across the 33°S. Conversely, in the Central/South part of the Chilean coast, the localization of the genetic breaks/sub-structure observed varied widely (36°S, 38°S, 39°S, and 40°S). These results suggest that a major historical vicariance event has modeled the genetic structure of several Chilean marine organisms in the north of the Chilean coast during the mid-Miocene, while more recent stochastic events and genetic drift could be the driving forces of genetic divergence/structuration in the central-southern part of the coast.
Collapse
Affiliation(s)
- Oscar R. Huanel
- Núcleo Milenio MASH, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- IRL 3614 Evolutionary Biology and Ecology of Algae, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique, Roscoff, France
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile
| | - Alejandro E. Montecinos
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco Sepúlveda-Espinoza
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Marie-Laure Guillemin
- IRL 3614 Evolutionary Biology and Ecology of Algae, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique, Roscoff, France
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| |
Collapse
|
2
|
Borburema HDS, Karsten U, Plag N, Yokoya NS, Marinho-Soriano E. Low molecular weight carbohydrate patterns of mangrove macroalgae from different climatic niches under ocean acidification, warming and salinity variation. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106316. [PMID: 38150789 DOI: 10.1016/j.marenvres.2023.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Ocean acidification has increased due to the enhanced solubility of CO2 in seawater. Mangrove macroalgae in tropical and subtropical coastal regions can benefit from the higher availability of CO2 for photosynthesis and primary production. However, they can be negatively affected by the simultaneously occurring warming and increased salinity in estuaries. Thus, we analyzed the isolated effects of ocean acidification and the interactive effects of increased temperature and salinity on the low molecular weight carbohydrate (LMWC) contents of the mangrove red macroalgae Bostrychia montagnei and Bostrychia calliptera from Brazilian tropical and subtropical populations. Specimens from both climatic niches were tolerant to pH decreased by CO2 enrichment and enhanced their LMWC contents under increased availability of CO2. Specimens from both climatic niches also accumulated their dulcitol and sorbitol contents to cope with warming and salt stress. Nevertheless, temperature of 34 °C was lethal for tropical macroalgae, while 29 °C and 31 °C were lethal for subtropical B. calliptera under salinity of 35. Tropical and subtropical B. montagnei synthesized dulcitol (5-110 mmol kg-1 dry weight) and sorbitol (5-100 mmol kg-1 dry weight) as osmoregulatory, energy and thermal protection compounds, whereas tropical and subtropical B. calliptera synthesized mainly dulcitol (10-210 mmol kg-1 dry weight). Although digeneaside has an energy function in Bostrychia spp., it is not an osmolyte or thermal protection compound. Our data demonstrated that both tropical and subtropical Bostrychia spp. benefit from ocean acidification by CO2 enrichment, increasing their LMWC contents. However, warming and increased salinity in estuaries will be detrimental to them, even they producing protective metabolites. Multifactorial approaches are recommended to investigate whether negative effects of increased temperature and salinity nullify positive effects of ocean acidification on these Bostrychia species/populations.
Collapse
Affiliation(s)
- Henrique D S Borburema
- Department of Oceanography and Limnology, Federal University of Rio Grande Do Norte, Via Costeira, Mãe Luiza, Natal, RN, 59014-002, Brazil.
| | - Ulf Karsten
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Strasse 3, 18051, Rostock, Germany; Interdisciplinary Faculty, Department of Maritime Systems, University of Rostock, Albert-Einstein-Strasse 21, 18051, Rostock, Germany
| | - Niklas Plag
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Strasse 3, 18051, Rostock, Germany
| | - Nair S Yokoya
- Biodiversity Conservation Center, Environmental Research Institute, Av. Miguel Estéfano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
| | - Eliane Marinho-Soriano
- Department of Oceanography and Limnology, Federal University of Rio Grande Do Norte, Via Costeira, Mãe Luiza, Natal, RN, 59014-002, Brazil
| |
Collapse
|
3
|
Faria AVF, Martins NT, Ayres-Ostrock LM, Gurgel CFD, Plastino EM. Phylogeography of the red alga Gracilariopsis tenuifrons (Gracilariales) along the Brazilian coast. JOURNAL OF PHYCOLOGY 2023; 59:1041-1052. [PMID: 37435655 DOI: 10.1111/jpy.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023]
Abstract
Changes in the sea level during the Holocene are regarded as one of the most prevalent drivers of the diversity and distribution of macroalgae in Brazil, influenced by the emergence of the Vitória-Trindade seamount chain (VTC). Gracilariopsis tenuifrons has a wide geographic distribution along the Brazilian coast, from Maranhão state (2°48'64.3" S) to Santa Catarina state (27.5°73'83" S). The knowledge of historical processes affecting diversity may allow the development of conservation strategies in environments against anthropogenic influence. Therefore, knowledge about phylogeography and populational genetic diversity in G. tenuifrons is necessary. Six populations were sampled along the northeastern tropical (Maranhão-MA, Rio Grande do Norte-RN, Alagoas-AL, and Bahia-BA States) and southeastern subtropical (São Paulo "Ubatuba"-SP1 and São Paulo "Itanhaém"-SP2 States) regions along the Brazilian coast. The genetic diversity and structure of G. tenuifrons were inferred using mitochondrial (COI-5P and cox2-3 concatenated) DNA markers. Gracilariopsis tenuifrons populations showed an evident separation between the northeast (from 2°48'64.3" S to 14°18'23" S; 17 haplotypes) and the southeast (from 23°50'14.9" S to 24°20'04.7" S; 10 haplotypes) regions by two mutational steps between them. The main biogeographical barrier to gene flow is located nearby the VTC. The southeast region (São Paulo State) is separated by two subphylogroups (SP1, three haplotypes and SP2, six haplotypes), and Santos Bay (estuary) has been considered a biogeographical barrier between them. The presence of genetic structure and putative barriers to gene flow are in concordance with previous studies reporting biogeographic breaks in the southwest Atlantic Ocean, including the genetic isolation between northeast and southeast regions for red and brown algae in the vicinity of the VTC.
Collapse
Affiliation(s)
- Andre V F Faria
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Nuno T Martins
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ligia M Ayres-Ostrock
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Hortimare-Breeding and Propagating Seaweed, Heerhugowaard, The Netherlands
| | - Carlos F D Gurgel
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Estela M Plastino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Martins NT, Macagnan LB, Cassano V, Gurgel CFD. Brazilian marine phylogeography: A literature synthesis and analysis of barriers. Mol Ecol 2022; 31:5423-5439. [PMID: 36073087 DOI: 10.1111/mec.16684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
In the last 30 years a plethora of phylogeography studies have been published targeting Brazilian marine species. To date, several historical and extant physical and ecological processes have been identified as drivers of allopatric, sympatric and parapatric population genetic differentiation detected along the Brazilian coast. Examples of extant physical barriers include the split of the South Equatorial Current into the Brazil and North Brazil boundary currents, the mouth of major rivers (e.g., Amazon, São Francisco and Doce rivers) and coastal upwellings. Examples of historical barriers include the Vitória-Trindade seamount chain promoting genetic differentiation during periods of glacial maxima and lower sea levels. Examples of ecological speciation include adaptations to different substrata, resource use and reproductive biology. We used published data to build data sets and generalized additive models to identify patterns of spatial phylogeographical concordance across multiple taxa and markers. Our results identify Cape São Roque as the most dominant extant barrier to gene flow along the Brazilian coast, followed by the Vitória-Trindade seamount chain and Cape Santa Marta. Cape Santa Marta is the northern winter limit of the Rio da Plata plume and is intermittently influenced by the Malvinas Current. This study provides a novel explicit quantitative approach to comparative phylogeography that recognizes four Brazilian phylogeographical regions delimited by processes associated with barriers to gene flow.
Collapse
Affiliation(s)
- Nuno T Martins
- Departamento de Botânica, Universidade de São Paulo, Instituto de Biociências, São Paulo, São Paulo, Brazil
| | - Leonardo B Macagnan
- NUPEM - Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Valéria Cassano
- Departamento de Botânica, Universidade de São Paulo, Instituto de Biociências, São Paulo, São Paulo, Brazil
| | - Carlos Frederico D Gurgel
- NUPEM - Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Martins NT, Cassano V, Gurgel CFD. Phylogeography of Colpomenia sinuosa (Ectocarpales, Phaeophyceae) along the Brazilian coast. JOURNAL OF PHYCOLOGY 2022; 58:543-554. [PMID: 35545902 DOI: 10.1111/jpy.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/19/2022] [Indexed: 06/15/2023]
Abstract
Colpomenia sinuosa is a cosmopolitan brown macroalgal species complex and hence a great candidate for evolutionary studies in the marine environment. Since 2009, three major C. sinuosa phylogenetic lineages, subdivided into eight subgroups, have been identified based on cox3 DNA sequences from worldwide collections. However, worldwide sampling remains limited and spotty. To date molecular data from Brazilian C. sinuosa populations have been limited to 10 specimens collected in a single locality. Nonetheless, C. sinuosa populations occur along the entire ~8,000 km Brazilian coast. Consequently, knowledge on population genetic diversity and spatial genetic structuring along most of the Brazilian coastline is nonexistent. To fulfill this gap in knowledge, we performed a phylogeographic analysis of C. sinuosa populations in Brazil. The highly variable cox3 marker was sequenced for 148 individuals collected in 12 localities in Brazil. Results identified two genetically distinct population groups (north vs. south) separated at 20.5° S latitude. Genetic diversity in northern populations is 14.6 and 15.5 times greater than southern populations in terms of haplotype and nucleotide diversity, respectively. Among northern populations, the Bahia state holds the largest genetic diversity. The southern populations had lower genetic diversity and no internal genetic sub-structure suggesting past bottlenecks followed by recent colonization from northern haplotypes. Our results do not indicate recent introductions of foreign haplotypes in Brazil and reinforce the crucial importance of historical and extant allopatric, parapatric, and sympatric processes driving marine macroalgal evolution in the Southwestern Atlantic Ocean.
Collapse
Affiliation(s)
- Nuno Tavares Martins
- Departamento de Botânica, Universidade de São Paulo, Instituto de Biociências, São Paulo, São Paulo, 05508-090, Brazil
| | - Valéria Cassano
- Departamento de Botânica, Universidade de São Paulo, Instituto de Biociências, São Paulo, São Paulo, 05508-090, Brazil
| | - Carlos Frederico Deluqui Gurgel
- NUPEM - Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, 27965-045, Brazil
| |
Collapse
|
6
|
Nauer F, Oliveira MC, Plastino EM, Yokoya NS, Fujii MT. Coping with heatwaves: How a key species of seaweed responds to heat stress along its latitudinal gradient. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105620. [PMID: 35472571 DOI: 10.1016/j.marenvres.2022.105620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/19/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Marine heatwaves (MHWs) frequency and intensity are increasing around the globe, affecting marine ecosystems' structure and functioning. Understanding how key marine species respond to these short-term extreme events is urgent for predicting damage to coastal ecosystems. Hypnea pseudomusciformis presents distribution in different floristic provinces on the Brazilian coast: tropical, transition and warm-temperate. Here, we evaluate the effects of simulated heatwaves on H. pseudomusciformis populations by measuring the changes in algal growth, pigment content, and photosynthesis. Based on data for the last four decades, we characterized the MHW patterns for each of the three collection sites. Perturbation levels were identified as average intensity heatwave (Δ +2 °C), maximum intensity heatwave (Δ +4 °C) and extreme intensity heatwave (Δ +6 °C), with an average duration of seven days. Based on growth rate data, corroborated with measurements of photosynthesis fluorescence and pigment contents. H. pseudomusciformis populations exhibit distinct tolerance and physiological responses to MHWs. The tropical and transition specimens were affected by Δ + 4 °C and Δ + 6 °C MHW scenarios, while the warm-temperate specimens was the only one to recover in all the MHW scenarios tested. These data are worrisome under a global warming scenario and an increase in MHWs, indicating that tropical and transition specimens of H. pseudomusciformis may be at risk of local extinction. This knowledge will be fundamental in driving any future management intervention or policy change for the conservation of marine ecosystems.
Collapse
Affiliation(s)
- Fabio Nauer
- Biodiversity Conservation Center, Environmental Research Institute, Av. Miguel Estéfano 3687, 04301-902, São Paulo, Brazil.
| | - Mariana Cabral Oliveira
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Estela Maria Plastino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Nair S Yokoya
- Biodiversity Conservation Center, Environmental Research Institute, Av. Miguel Estéfano 3687, 04301-902, São Paulo, Brazil
| | - Mutue Toyota Fujii
- Biodiversity Conservation Center, Environmental Research Institute, Av. Miguel Estéfano 3687, 04301-902, São Paulo, Brazil
| |
Collapse
|