1
|
Maciel F, Madureira L, Geada P, Teixeira JA, Silva J, Vicente AA. The potential of Pavlovophyceae species as a source of valuable carotenoids and polyunsaturated fatty acids for human consumption. Biotechnol Adv 2024; 74:108381. [PMID: 38777244 DOI: 10.1016/j.biotechadv.2024.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Microalgae are a group of microorganisms, mostly photoautotrophs with high CO2 fixation capacity, that have gained increased attention in the last decades due to their ability to produce a wide range of valuable metabolites, such as carotenoids and polyunsaturated fatty acids, for application in food/feed, pharmaceutical, and cosmeceutical industries. Their increasing relevance has highlighted the importance of identifying and culturing new bioactive-rich microalgae species, as well as of a thorough understanding of the growth conditions to optimize the biomass production and master the biochemical composition according to the desired application. Thus, this review intends to describe the main cell processes behind the production of carotenoids and polyunsaturated fatty acids, in order to understand the possible main triggers responsible for the accumulation of those biocompounds. Their economic value and the biological relevance for human consumption are also summarized. In addition, an extensive review of the impact of culture conditions on microalgae growth performance and their biochemical composition is presented, focusing mainly on the studies involving Pavlovophyceae species. A complementary description of the biochemical composition of these microalgae is also presented, highlighting their potential applications as a promising bioresource of compounds for large-scale production and human and animal consumption.
Collapse
Affiliation(s)
- Filipe Maciel
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Leandro Madureira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Pedro Geada
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana Silva
- ALLMICROALGAE, Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal.
| | - António Augusto Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Das S, Gevaert F, Ouddane B, Duong G, Souissi S. Single toxicity of arsenic and combined trace metal exposure to a microalga of ecological and commercial interest: Diacronema lutheri. CHEMOSPHERE 2022; 291:132949. [PMID: 34798102 DOI: 10.1016/j.chemosphere.2021.132949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Eco-toxicological assays with species of economic interest such as Diacronema lutheri are essential for industries that produce aquaculture feed, natural food additives and also in drug developing industries. Our study involved the exposure of a single and combined toxicity of arsenic (As V) to D. lutheri for the entire algal growth phase and highlighted that a combined exposure of As V with other essential (Copper, Cu; Nickel, Ni) and non-essential (Cadmium, Cd; Lead, Pb) trace metals reduced significantly the cell number, chlorophyll a content, and also significantly increased the de-epoxidation ratio (DR) as a stress response when compared to the single toxicity of As V. Arsenic, as one of the ubiquitous trace metal and an active industrial effluent is reported to have an increased bio-concentration factor when in mixture with other trace metals in this study. In the combined exposure, the concentration of total As bio-accumulated by D. lutheri was higher than in the single exposure. Hence, polluted areas with the prevalence of multiple contaminants along with the highly toxic trace metals like As can impose a greater risk to the exposed organisms that may get further bio-magnified in the food chain. Our study highlights the consequences and the response of D. lutheri in terms of contamination from single and multiple trace metals in order to obtain a safer biomass production for the growing need of natural derivatives.
Collapse
Affiliation(s)
- Shagnika Das
- Univ. Lille, CNRS, Univ. Littoral Côte D'Opale, IRD, UMR 8187 - LOG - Laboratoire D'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France; Univ. Lille, CNRS, UMR 8516 - LASIRE - Equipe Physico-chimie de L'Environnement, Bâtiment C8, F-59000, Lille, France
| | - François Gevaert
- Univ. Lille, CNRS, Univ. Littoral Côte D'Opale, IRD, UMR 8187 - LOG - Laboratoire D'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France
| | - Baghdad Ouddane
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Equipe Physico-chimie de L'Environnement, Bâtiment C8, F-59000, Lille, France
| | - Gwendoline Duong
- Univ. Lille, CNRS, Univ. Littoral Côte D'Opale, IRD, UMR 8187 - LOG - Laboratoire D'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte D'Opale, IRD, UMR 8187 - LOG - Laboratoire D'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France.
| |
Collapse
|
3
|
Magoni C, Bertacchi S, Giustra CM, Guzzetti L, Cozza R, Ferrari M, Torelli A, Marieschi M, Porro D, Branduardi P, Labra M. Could microalgae be a strategic choice for responding to the demand for omega-3 fatty acids? A European perspective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Fattore N, Bellan A, Pedroletti L, Vitulo N, Morosinotto T. Acclimation of photosynthesis and lipids biosynthesis to prolonged nitrogen and phosphorus limitation in Nannochloropsis gaditana. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Characterization of Chlorella sorokiniana and Chlorella vulgaris fatty acid components under a wide range of light intensity and growth temperature for their use as biological resources. Heliyon 2020; 6:e04447. [PMID: 32743091 PMCID: PMC7387821 DOI: 10.1016/j.heliyon.2020.e04447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/02/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
This study aims to characterize the potential of three strains of microalgal species (Chlorella sorokiniana KNUA114 and KNUA122; C. vulgaris KNUA104) for use as feedstock, based on their fatty acid compositions. Each strain was molecularly identified using four marker genes (ITS, SSU, rbcL, and tufA) and phylogenetically characterized. C. sorokiniana and C. vulgaris collected from Ulleung Island, South Korea, were homologous with other known species groups. Samples' fatty acid components were measured using GC/MS analysis in growth temperatures of 10 °C, 25 °C, and 35 °C. The growth rate of C. sorokiniana strains was higher than that of C. vulgaris under high-temperature conditions, confirming the potential industrial applicability of the former as feedstock material. Additionally, saturated fatty acid contents and productivities increased as biological resources of the C. sorokiniana strains were higher than those of C. vulgaris under high light intensity and temperature conditions. These results suggest that the fatty acid components of C. sorokiniana strains may potentially be used as biological resources (e.g., feedstock).
Collapse
|