1
|
Wang H, Xie X, Gu W, Zheng Z, Zhuo J, Shao Z, Huan L, Zhang B, Niu J, Gao S, Wang X, Wang G. Gene editing of economic macroalga Neopyropia yezoensis (Rhodophyta) will promote its development into a model species of marine algae. THE NEW PHYTOLOGIST 2024; 244:1687-1691. [PMID: 39267248 DOI: 10.1111/nph.20123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Affiliation(s)
- Hong Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiujun Xie
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Wenhui Gu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhenbing Zheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jintao Zhuo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhizhuo Shao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Huan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Baoyu Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jianfeng Niu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Shan Gao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xulei Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Guangce Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
2
|
Li Y, Yang J, Sun Z, Niu J, Wang G. Overexpression of MPV17/PMP22-like protein 2 gene decreases production of radical oxygen species in Pyropia yezoensis (Bangiales, Rhodophyta). JOURNAL OF PHYCOLOGY 2024; 60:928-941. [PMID: 38924097 DOI: 10.1111/jpy.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
The northward shift of Pyropia yezoensis aquaculture required the breeding of germplasms with tolerance to the oxidative stress due to the high light conditions of the North Yellow Sea area. The MPV17/PMP22 family proteins were identified as a molecule related to reactive oxygen species (ROS) metabolism. Here, one of the MPV17 homolog genes designated as PyM-LP2 was selected for functional identification by introducing the encoding sequence region/reverse complementary fragment into the Py. yezoensis genome. Although the photosynthetic activity, the respiratory rate, and the ROS level in wild type (WT) and different gene-transformed algal strains showed similar levels under normal conditions, the overexpression (OE) strain exhibited higher values of photosynthesis, respiration, and reducing equivalents pool size but lower intracellular ROS production under stress conditions compared with the WT. Conversely, all the above parameters showed opposite variation trends in RNAi strain as those in the OE strain. This implied that the PyM-LP2 protein was involved in the mitigation of the oxidative stress. Sequence analysis revealed that this PyM-LP2 protein was assorted to peroxisomes and might serve as a poring channel for transferring malate (Mal) to peroxisomes. By overexpressing PyM-LP2, the transfer of Mal from chloroplasts to peroxisomes was enhanced under stress conditions, which promoted photorespiration and ultimately alleviated excessive reduction of the photosynthetic electron chain. This research lays the groundwork for the breeding of algae with enhanced resistance to oxidative stresses.
Collapse
Affiliation(s)
- Yujie Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jiali Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Zhenjie Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jianfeng Niu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Zhang B, Liu X, Huan L, Shao Z, Zheng Z, Wang G. Carbonic anhydrase isoforms of Neopyropia yezoensis: Intracellular localization and expression profiles in response to inorganic carbon concentration and life stage. JOURNAL OF PHYCOLOGY 2022; 58:657-668. [PMID: 35757840 DOI: 10.1111/jpy.13276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Macroalgae, particularly commercially grown seaweed, substantially contribute to CO2 removal and carbon storage. However, knowledge regarding the CO2 concentrating mechanism (CCM) of macroalgae is limited. Carbonic anhydrase (CA), a key component of the biophysical CCM, plays important roles in many physiological reactions in various organisms. Few characteristics of CA in Neopyropia yezoensis are known, particularly its intracellular location and responses to different concentrations of Ci. We identified, amplified, and characterized 11 putative genes encoding N. yezoensis CA. The predicted corresponding proteins clustered into three subfamilies: α-, β-, and γ-type. The intracellular localization of seven CA isoforms-one in the chloroplasts, three in the cytoplasm, and three in the mitochondria-was elucidated with fusion proteins. Higher NyCA expression, particularly of certain chloroplastic, cytosolic, and mitochondrial CAs, is observed more often during the foliose stage, thus suggesting that CAs play important roles in development in N. yezoensis.
Collapse
Affiliation(s)
- Baoyu Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Li Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhizhuo Shao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenbing Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|