1
|
Bessho K. Stable demographic ratios of haploid gametophyte to diploid sporophyte abundance in macroalgal populations. PLoS One 2024; 19:e0295409. [PMID: 38451989 PMCID: PMC10919683 DOI: 10.1371/journal.pone.0295409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/22/2023] [Indexed: 03/09/2024] Open
Abstract
Macroalgal populations often consist of free-living haploid (gametophyte) and diploid (sporophyte) stages. Various ecological studies have been conducted to examine the demographic diversity of haploid-diploid populations with regard to the dominant stage. Here, I relaxed the assumption of classical research that the life history parameters of haploids and diploids are identical and developed a generalized haploid-diploid model that explicitly accounts for population density dependence and asexual reproduction. Analysis of this model yielded an exact solution for the abundance ratio of haploids to diploids in a population in which the ratio is determined by the balance of four demographic forces: sexual reproduction by haploids, sexual reproduction by diploids, asexual reproduction by haploids, and asexual reproduction by diploids. Furthermore, the persistence of a haploid-diploid population and its total biomass are shown to be determined by the basic reproductive number (R0), which is shown to be a function of these four demographic forces. When R0 is greater than one, the haploid-diploid population stably persists, and the ploidy ratio obtained by the analytical solution is realized.
Collapse
|
2
|
Heiser S, Amsler CD, Stoeckel S, McClintock JB, Baker BJ, Krueger-Hadfield SA. Tetrasporophytic bias coupled with heterozygote deficiency in Antarctic Plocamium sp. (Florideophyceae, Rhodophyta). JOURNAL OF PHYCOLOGY 2023; 59:681-697. [PMID: 37114881 DOI: 10.1111/jpy.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/11/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023]
Abstract
Meiosis and syngamy generate an alternation between two ploidy stages, but the timing of these two processes varies widely across taxa, thereby generating life cycle diversity. One hypothesis suggests that life cycles with long-lived haploid stages are correlated with selfing, asexual reproduction, or both. Though mostly studied in angiosperms, selfing and asexual reproduction are often associated with marginal habitats. Yet, in haploid-diploid macroalgae, these two reproductive modes have subtle but unique consequences whereby predictions from angiosperms may not apply. Along the western Antarctic Peninsula, there is a thriving macroalgal community, providing an opportunity to explore reproductive system variation in haploid-diploid macroalgae at high latitudes where endemism is common. Plocamium sp. is a widespread and abundant red macroalga observed within this ecosystem. We sampled 12 sites during the 2017 and 2018 field seasons and used 10 microsatellite loci to describe the reproductive system. Overall genotypic richness and evenness were high, suggesting sexual reproduction. Eight sites were dominated by tetrasporophytes, but there was strong heterozygote deficiency, suggesting intergametophytic selfing. We observed slight differences in the prevailing reproductive mode among sites, possibly due to local conditions (e.g., disturbance) that may contribute to site-specific variation. It remains to be determined whether high levels of selfing are characteristic of macroalgae more generally at high latitudes, due to the haploid-diploid life cycle, or both. Further investigations of algal life cycles will likely reveal the processes underlying the maintenance of sexual reproduction more broadly across eukaryotes, but more studies of natural populations are required.
Collapse
Affiliation(s)
- Sabrina Heiser
- Department of Biology, University of Alabama, Birmingham, Alabama, USA
| | - Charles D Amsler
- Department of Biology, University of Alabama, Birmingham, Alabama, USA
| | - Solenn Stoeckel
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, France
| | | | - Bill J Baker
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | | |
Collapse
|
3
|
Huanel OR, Quesada-Calderón S, Ríos Molina C, Morales-González S, Saenz-Agudelo P, Nelson WA, Arakaki N, Mauger S, Faugeron S, Guillemin ML. Pre-domestication bottlenecks of the cultivated seaweed Gracilaria chilensis. Mol Ecol 2022; 31:5506-5523. [PMID: 36029170 DOI: 10.1111/mec.16672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
Gracilaria chilensis is the main cultivated seaweed in Chile. The low genetic diversity observed in the Chilean populations has been associated with the over-exploitation of natural beds and/or the founder effect that occurred during post-glacial colonization from New Zealand. How these processes have affected its evolutionary trajectory before farming and incipient domestication is poorly understood. In this study, we used 2232 single nucleotide polymorphisms (SNPs) to assess how the species' evolutionary history in New Zealand (its region of origin), the founder effect linked to transoceanic dispersion and colonization of South America, and the recent over-exploitation of natural populations have influenced the genetic architecture of G. chilensis in Chile. The contrasting patterns of genetic diversity and structure observed between the two main islands in New Zealand attest to the important effects of Quaternary glacial cycles on G. chilensis. Approximate Bayesian Computation (ABC) analyses indicated that Chatham Island and South America were colonized independently near the end of the Last Glacial Maximum and emphasized the importance of coastal and oceanic currents during that period. Furthermore, ABC analyses inferred the existence of a recent and strong genetic bottleneck in Chile, matching the period of over-exploitation of the natural beds during the 1970s, followed by rapid demographic expansion linked to active clonal propagation used in farming. Recurrent genetic bottlenecks strongly eroded the genetic diversity of G. chilensis prior to its cultivation, raising important challenges for the management of genetic resources in this incipiently domesticated species.
Collapse
Affiliation(s)
- Oscar R Huanel
- Núcleo Milenio MASH, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France
| | - Suany Quesada-Calderón
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,AUSTRAL-omics, Vicerrectoría de Investigación, Desarrollo y Creación Artística, Universidad Austral de Chile, Valdivia, Chile
| | - Cristian Ríos Molina
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Sarai Morales-González
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Saenz-Agudelo
- IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France.,Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,ANID- Millennium Science Initiative Nucleus (NUTME), Las Cruces, Chile
| | - Wendy A Nelson
- National Institute of Water and Atmospheric Research, Wellington, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Natalia Arakaki
- Instituto del Mar del Perú, Banco de Germoplasma de Organismos Acuáticos, Chucuito, Callao, Peru
| | - Stéphane Mauger
- IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France
| | - Sylvain Faugeron
- Núcleo Milenio MASH, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France
| | - Marie-Laure Guillemin
- IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France.,Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
4
|
Sambhwani K, Kazi MA, Mishra A, Mantri VA. De novo transcriptome analysis of industrially important agarophyte Gracilaria dura (Rhodophyta: Gracilariacae) revealed differential expression of genes in gametophyte and sporophyte life-phases. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Vieira VMNCS, Engelen AH, Huanel OR, Guillemin ML. An Individual-Based Model of the Red Alga Agarophyton chilense Unravels the Complex Demography of Its Intertidal Stands. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.797350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Algal demographic models have been developed mainly to study their life cycle evolution or optimize their commercial exploitation. Most commonly, structured-aggregated population models simulate the main life cycle stages considering their fertility, growth and survival. Their coarse resolution results in weak predictive abilities since neglected details may still impact the whole. In our case, we need a model of Agarophyton chilense natural intertidal populations that unravels the complex demography of isomorphic biphasic life cycles and be further used for: (i) introduction of genetics, aimed at studying the evolutionary stability of life cycles, (ii) optimizing commercial exploitation, and (iii) adaptation for other species. Long-term monitoring yield 6,066 individual observations and 40 population observations. For a holistic perspective, we developed an Individual-Based Model (IBM) considering ploidy stage, sex stage, holdfast age and survival, frond size, growth and breakage, fecundity, spore survival, stand biomass, location and season. The IBM was calibrated and validated comparing observed and estimated sizes and abundances of gametophyte males, gametophyte females and tetrasporophytes, stand biomass, haploid:dipoid ratio (known as H:D or G:T), fecundity and recruitment. The IBM replicated well the respective individual and population properties, and processes such as winter competition for light, self-thinning, summer stress from desiccation, frond breakage and re-growth, and different niche occupation by haploids and diploids. Its success depended on simulating with precision details such as the holdfasts’ dynamics. Because “details” often occur for a reduced number of individuals, inferring about them required going beyond statistically significant evidences and integrating these with parameter calibration aimed at maximized model fit. On average, the population was haploid-dominated (H:D > 1). In locations stressed by desiccation, the population was slightly biased toward the diploids and younger individuals due to the superior germination and survival of the diploid sporelings. In permanently submerged rock pools the population was biased toward the haploids and older individuals due to the superior growth and survival of the haploid adults. The IBM application demonstrated that conditional differentiation among ploidy stages was responsible for their differential niche occupation, which, in its turn, has been argued as the driver of the evolutionary stability of isomorphic biphasic life cycles.
Collapse
|