1
|
Pino-Bodas R, Blázquez M, de los Ríos A, Pérez-Ortega S. Myrmecia, Not Asterochloris, Is the Main Photobiont of Cladonia subturgida ( Cladoniaceae, Lecanoromycetes). J Fungi (Basel) 2023; 9:1160. [PMID: 38132761 PMCID: PMC10744234 DOI: 10.3390/jof9121160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
This study explores the diversity of photobionts associated with the Mediterranean lichen-forming fungus Cladonia subturgida. For this purpose, we sequenced the whole ITS rDNA region by Sanger using a metabarcoding method for ITS2. A total of 41 specimens from Greece, Italy, France, Portugal, and Spain were studied. Additionally, two specimens from Spain were used to generate four cultures. Our molecular studies showed that the genus Myrmecia is the main photobiont of C. subturgida throughout its geographic distribution. This result contrasts with previous studies, which indicated that the main photobiont for most Cladonia species is Asterochloris. The identity of Myrmecia was also confirmed by ultrastructural studies of photobionts within the lichen thalli and cultures. Photobiont cells showed a parietal chloroplast lacking a pyrenoid, which characterizes the species in this genus. Phylogenetic analyses indicate hidden diversity within this genus. The results of amplicon sequencing showed the presence of multiple ASVs in 58.3% of the specimens studied.
Collapse
Affiliation(s)
- Raquel Pino-Bodas
- Biodiversity and Conservation Area, Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, C/Tulipán s/n, 28933 Móstoles, Spain
- Royal Botanic Gardens, Kew, Richmond, London TW9 3DS, UK
| | - Miguel Blázquez
- Department of Mycology, Real Jardín Botánico (CSIC), 28014 Madrid, Spain; (M.B.); (S.P.-O.)
| | | | - Sergio Pérez-Ortega
- Department of Mycology, Real Jardín Botánico (CSIC), 28014 Madrid, Spain; (M.B.); (S.P.-O.)
| |
Collapse
|
2
|
Tagirdzhanova G, Scharnagl K, Yan X, Talbot NJ. Genomic analysis of Coccomyxa viridis, a common low-abundance alga associated with lichen symbioses. Sci Rep 2023; 13:21285. [PMID: 38042930 PMCID: PMC10693582 DOI: 10.1038/s41598-023-48637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023] Open
Abstract
Lichen symbiosis is centered around a relationship between a fungus and a photosynthetic microbe, usually a green alga. In addition to their main photosynthetic partner (the photobiont), lichen symbioses can contain additional algae present in low abundance. The biology of these algae and the way they interact with the rest of lichen symbionts remains largely unknown. Here we present the first genome sequence of a non-photobiont lichen-associated alga. Coccomyxa viridis was unexpectedly found in 12% of publicly available lichen metagenomes. With few exceptions, members of the Coccomyxa viridis clade occur in lichens as non-photobionts, potentially growing in thalli endophytically. The 45.7 Mbp genome of C. viridis was assembled into 18 near chromosome-level contigs, making it one of the most contiguous genomic assemblies for any lichen-associated algae. Comparing the C. viridis genome to its close relatives revealed the presence of traits associated with the lichen lifestyle. The genome of C. viridis provides a new resource for exploring the evolution of the lichen symbiosis, and how symbiotic lifestyles shaped evolution in green algae.
Collapse
Affiliation(s)
- Gulnara Tagirdzhanova
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Klara Scharnagl
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- University & Jepson Herbaria, University of California Berkeley, Valley Life Sciences Building, Berkeley, CA, 94720, USA
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| |
Collapse
|
3
|
García-Breijo FJ, Molins A, Reig-Armiñana J, Barreno E. The Tripartite Lichen Ricasolia virens: Involvement of Cyanobacteria and Bacteria in Its Morphogenesis. Microorganisms 2023; 11:1517. [PMID: 37375019 DOI: 10.3390/microorganisms11061517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Ricasolia virens is an epiphytic lichen-forming fungus mainly distributed in Western Europe and Macaronesia in well-structured forests with ecological continuity that lack eutrophication. It is considered to be threatened or extinct in many territories in Europe (IUCN). Despite its biological and ecological relevance, studies on this taxon are scarce. The thalli are tripartite, and the mycobiont has a simultaneous symbiotic relationship with cyanobacteria and green microalgae, which represent interesting models to analyse the strategies and adaptations resulting from the interactions of lichen symbionts. The present study was designed to contribute to a better understanding of this taxon, which has shown a clear decline over the last century. The symbionts were identified by molecular analysis. The phycobiont is Symbiochloris reticulata, and the cyanobionts (Nostoc) are embedded in internal cephalodia. Light, transmission electron and low-temperature scanning microscopy techniques were used to investigate the thallus anatomy, ultrastructure of microalgae and ontogeny of pycnidia and cephalodia. The thalli are very similar to its closest relative, Ricasolia quercizans. The cellular ultrastructure of S. reticulata by TEM is provided. Non-photosynthetic bacteria located outside the upper cortex are introduced through migratory channels into the subcortical zone by the splitting of fungal hyphae. Cephalodia were very abundant, but never as external photosymbiodemes.
Collapse
Affiliation(s)
- Francisco J García-Breijo
- Departamento de Ecosistemas Agroforestales, ETSIAMN, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - Arantzazu Molins
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Botánica, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Spain
- Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Departamento de Biología, Universitat de les Illes Balears (UIB), Ctra. Valldemossa Km.7., 07122 Palma de Malllorca, Spain
| | - José Reig-Armiñana
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Botánica, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Eva Barreno
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Botánica, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Spain
| |
Collapse
|
4
|
Phylogeography of Ramalina farinacea (Lichenized Fungi, Ascomycota) in the Mediterranean Basin, Europe, and Macaronesia. DIVERSITY 2023. [DOI: 10.3390/d15030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Ramalina farinacea is an epiphytic lichen-forming fungus with a broad geographic distribution, especially in the Northern Hemisphere. In the eighties of the last century, it was hypothesized that R. farinacea had originated in the Macaronesian–Mediterranean region, with the Canary Islands as its probable southernmost limit, and thereafter it would have increased its distribution area. In order to explore the phylogeography of this emblematic lichen, we analyzed 120 thalli of R. farinacea collected in 38 localities distributed in temperate and boreal Europe, the Western Mediterranean Basin, and several Macaronesian archipelagos in the Atlantic Ocean. Data from two nuclear markers (nrITS and uid70) of the mycobiont were obtained to calculate genetic diversity indices to infer the phylogenies and haplotype networks and to investigate population structure. In addition, dating analysis was conducted to provide a valuable hypothesis of the timing of the origin and diversification of R. farinacea and its close allies. Our results highlight that phylogenetic species circumscription in the “Ramalina farinacea group” is complex and suggests that incomplete lineage sorting is at the base of conflicting phylogenetic signals. The existence of a high number of haplotypes restricted to the Macaronesian region, together with the diversification of R. farinacea in the Pleistocene, suggests that this species and its closest relatives originated during relatively recent geological times and then expanded its range to higher latitudes. However, our data cannot rule out whether the species originated from the Macaronesian archipelagos exclusively or also from the Mediterranean Basin. In conclusion, the present work provides a valuable biogeographical hypothesis for disentangling the evolution of this epiphytic lichen in space and time.
Collapse
|
5
|
Miral A, Jargeat P, Mambu L, Rouaud I, Tranchimand S, Tomasi S. Microbial community associated with the crustose lichen Rhizocarpon geographicum L. (DC.) living on oceanic seashore: A large source of diversity revealed by using multiple isolation methods. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:856-872. [PMID: 35860838 PMCID: PMC9796121 DOI: 10.1111/1758-2229.13105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 05/13/2023]
Abstract
Recently, the study of the interactions within a microcosm between hosts and their associated microbial communities drew an unprecedented interest arising from the holobiont concept. Lichens, a symbiotic association between a fungus and an alga, are redefined as complex ecosystems considering the tremendous array of associated microorganisms that satisfy this concept. The present study focuses on the diversity of the microbiota associated with the seashore located lichen Rhizocarpon geographicum, recovered by different culture-dependent methods. Samples harvested from two sites allowed the isolation and the molecular identification of 68 fungal isolates distributed in 43 phylogenetic groups, 15 bacterial isolates distributed in five taxonomic groups and three microalgae belonging to two species. Moreover, for 12 fungal isolates belonging to 10 different taxa, the genus was not described in GenBank. These fungal species have never been sequenced or described and therefore non-studied. All these findings highlight the novel and high diversity of the microflora associated with R. geographicum. While many species disappear every day, this work suggests that coastal and wild environments still contain an unrevealed variety to offer and that lichens constitute a great reservoir of new microbial taxa which can be recovered by multiplying the culture-dependent techniques.
Collapse
Affiliation(s)
- Alice Miral
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)‐UMR 6226RennesFrance
| | - Patricia Jargeat
- UMR 5174 UPS‐CNRS‐IRD Laboratoire Evolution et Diversité Biologique, EDBUniversité Toulouse‐3, Bât 4R1ToulouseFrance
| | - Lengo Mambu
- EA 7500 Laboratoire PEIRENE, Faculté de PharmacieUniversité de LimogesLimoges CedexFrance
| | - Isabelle Rouaud
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)‐UMR 6226RennesFrance
| | - Sylvain Tranchimand
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)‐UMR 6226Université de RennesRennesFrance
| | - Sophie Tomasi
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)‐UMR 6226RennesFrance
| |
Collapse
|
6
|
Alonso-García M, Pino-Bodas R, Villarreal A JC. Co-dispersal of symbionts in the lichen Cladonia stellaris inferred from genomic data. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Chiva S, Moya P, Barreno E. Lichen phycobiomes as source of biodiversity for microalgae of the Stichococcus-like genera. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractThe term phycobiome was recently introduced to designate all the microalgae (primary or non-primary) associated with lichen symbioses. Abundant non-primary symbiotic microalgae are usually obtained from lichen isolations, confirming that thalli are a source of biodiversity and new species. In this study, microalgae were isolated from thalli of Buellia zoharyi, Ramalina farinacea and Parmotrema pseudotinctorum collected in the Iberian Peninsula and the Canary Islands. Excluding Trebouxia phycobionts, 17 strains similar to Stichococcus (Prasiola clade) were obtained. Molecular identification was carried out by nuclear ITS sequencing, and a phylogenetic tree was generated from these sequences, and grouping them into 4 clades: Diplosphaera chodatti, Diplosphaera sp.1. Deuterostichocuccus sp.1. and Tritostichococcus coniocybes. It is also noteworthy that Diplosphaera sp.1 was detected and isolated from three phylogenetically distant lichenized fungi (B. zoharyi, R. farinacea and P. pseudotinctorum), which were sampled in ecologically different localities, namely Tenerife, La Gomera and Castellón. These results reinforce the idea of the constant presence of certain microalgae associated with the lichen thalli which, despite not being the main primary photobiont, probably form part of the lichen’s phycobiomes.
Collapse
|
8
|
Trebouxia lynnae sp. nov. (Former Trebouxia sp. TR9): Biology and Biogeography of an Epitome Lichen Symbiotic Microalga. BIOLOGY 2022; 11:biology11081196. [PMID: 36009823 PMCID: PMC9405249 DOI: 10.3390/biology11081196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 12/02/2022]
Abstract
Two microalgal species, Trebouxia jamesii and Trebouxia sp. TR9, were detected as the main photobionts coexisting in the thalli of the lichen Ramalina farinacea. Trebouxia sp. TR9 emerged as a new taxon in lichen symbioses and was successfully isolated and propagated in in vitro culture and thoroughly investigated. Several years of research have confirmed the taxon Trebouxia sp. TR9 to be a model/reference organism for studying mycobiont−photobiont association patterns in lichen symbioses. Trebouxia sp. TR9 is the first symbiotic, lichen-forming microalga for which an exhaustive characterization of cellular ultrastructure, physiological traits, genetic and genomic diversity is available. The cellular ultrastructure was studied by light, electron and confocal microscopy; physiological traits were studied as responses to different abiotic stresses. The genetic diversity was previously analyzed at both the nuclear and organelle levels by using chloroplast, mitochondrial, and nuclear genome data, and a multiplicity of phylogenetic analyses were carried out to study its intraspecific diversity at a biogeographical level and its specificity association patterns with the mycobiont. Here, Trebouxia sp. TR9 is formally described by applying an integrative taxonomic approach and is presented to science as Trebouxia lynnae, in honor of Lynn Margulis, who was the primary modern proponent for the significance of symbiosis in evolution. The complete set of analyses that were carried out for its characterization is provided.
Collapse
|
9
|
Allen JL, Lendemer JC. A call to reconceptualize lichen symbioses. Trends Ecol Evol 2022; 37:582-589. [PMID: 35397954 DOI: 10.1016/j.tree.2022.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/23/2022]
Abstract
Several decades of research across disciplines have overturned historical perspectives of symbioses dominated by binary characterizations of highly specific species-species interactions. This paradigm shift has unlocked the previously underappreciated and overlooked dynamism of fungal mutualisms such as mycorrhizae. Lichens are another example of important fungal mutualisms where reconceptualization is urgently needed to realize their potential as model systems. This reconceptualization requires both an objective synthesis of new data and envisioning a revised integrative approach that unifies the spectrum of ecology and evolution. We propose a ten-theme framework that if pursued would propel lichens to the vanguard of symbiotic theory.
Collapse
Affiliation(s)
- Jessica L Allen
- Eastern Washington University, Biology Department, Cheney, WA 99004, USA.
| | - James C Lendemer
- Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458-5126, USA.
| |
Collapse
|
10
|
Self-potent anti-microbial and anti-fouling action of silver nanoparticles derived from lichen-associated bacteria. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
De Carolis R, Cometto A, Moya P, Barreno E, Grube M, Tretiach M, Leavitt SD, Muggia L. Photobiont Diversity in Lichen Symbioses From Extreme Environments. Front Microbiol 2022; 13:809804. [PMID: 35422771 PMCID: PMC9002315 DOI: 10.3389/fmicb.2022.809804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
Fungal–algal relationships—both across evolutionary and ecological scales—are finely modulated by the presence of the symbionts in the environments and by the degree of selectivity and specificity that either symbiont develop reciprocally. In lichens, the green algal genus Trebouxia Puymaly is one of the most frequently recovered chlorobionts. Trebouxia species-level lineages have been recognized on the basis of their morphological and phylogenetic diversity, while their ecological preferences and distribution are still only partially unknown. We selected two cosmopolitan species complexes of lichen-forming fungi as reference models, i.e., Rhizoplaca melanophthalma and Tephromela atra, to investigate the diversity of their associated Trebouxia spp. in montane habitats across their distributional range worldwide. The greatest diversity of Trebouxia species-level lineages was recovered in the altitudinal range 1,000–2,500 m a.s.l. A total of 10 distinct Trebouxia species-level lineages were found to associate with either mycobiont, for which new photobionts are reported. One previously unrecognized Trebouxia species-level lineage was identified and is here provisionally named Trebouxia “A52.” Analyses of cell morphology and ultrastructure were performed on axenically isolated strains to fully characterize the new Trebouxia “A52” and three other previously recognized lineages, i.e., Trebouxia “A02,” T. vagua “A04,” and T. vagua “A10,” which were successfully isolated in culture during this study. The species-level diversity of Trebouxia associating with the two lichen-forming fungi in extreme habitats helps elucidate the evolutionary pathways that this lichen photobiont genus traversed to occupy varied climatic and vegetative regimes.
Collapse
Affiliation(s)
| | - Agnese Cometto
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Patricia Moya
- Botánica, ICBIBE, Faculty of CC. Biológicas, Universitat de València, Valencia, Spain
| | - Eva Barreno
- Botánica, ICBIBE, Faculty of CC. Biológicas, Universitat de València, Valencia, Spain
| | - Martin Grube
- Institute of Biology, University of Graz, Graz, Austria
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Steven D Leavitt
- Department of Biology, Brigham Young University, Provo, UT, United States
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
12
|
Blázquez M, Hernández-Moreno LS, Gasulla F, Pérez-Vargas I, Pérez-Ortega S. The Role of Photobionts as Drivers of Diversification in an Island Radiation of Lichen-Forming Fungi. Front Microbiol 2022; 12:784182. [PMID: 35046912 PMCID: PMC8763358 DOI: 10.3389/fmicb.2021.784182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023] Open
Abstract
Speciation in oceanic islands has attracted the interest of scientists since the 19th century. One of the most striking evolutionary phenomena that can be studied in islands is adaptive radiation, that is, when a lineage gives rise to different species by means of ecological speciation. Some of the best-known examples of adaptive radiation are charismatic organisms like the Darwin finches of the Galapagos and the cichlid fishes of the great African lakes. In these and many other examples, a segregation of the trophic niche has been shown to be an important diversification driver. Radiations are known in other groups of organisms, such as lichen-forming fungi. However, very few studies have investigated their adaptive nature, and none have focused on the trophic niche. In this study, we explore the role of the trophic niche in a putative radiation of endemic species from the Macaronesian Region, the Ramalina decipiens group. The photobiont diversity was studied by Illumina MiSeq sequencing of the ITS2 region of 197 specimens spanning the phylogenetic breadth and geographic range of the group. A total of 66 amplicon sequence variants belonging to the four main clades of the algal genus Trebouxia were found. Approximately half of the examined thalli showed algal coexistence, but in most of them, a single main photobiont amounted to more than 90% of the reads. However, there were no significant differences in photobiont identity and in the abundance of ITS2 reads across the species of the group. We conclude that a segregation of the trophic niche has not occurred in the R. decipiens radiation.
Collapse
Affiliation(s)
- Miguel Blázquez
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain.,Open Access Publication Support Program, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Lucía S Hernández-Moreno
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain.,Open Access Publication Support Program, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco Gasulla
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Israel Pérez-Vargas
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Sergio Pérez-Ortega
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain.,Open Access Publication Support Program, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
13
|
Chloroplast morphology and pyrenoid ultrastructural analyses reappraise the diversity of the lichen phycobiont genus Trebouxia (Chlorophyta). ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Moya P, Molins A, Škaloud P, Divakar PK, Chiva S, Dumitru C, Molina MC, Crespo A, Barreno E. Biodiversity Patterns and Ecological Preferences of the Photobionts Associated With the Lichen-Forming Genus Parmelia. Front Microbiol 2021; 12:765310. [PMID: 35003003 PMCID: PMC8739953 DOI: 10.3389/fmicb.2021.765310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The worldwide, ecologically relevant lichen-forming genus Parmelia currently includes 41 accepted species, of which the Parmelia sulcata group (PSULgp) and the Parmelia saxatilis group (PSAXgp) have received considerable attention over recent decades; however, phycobiont diversity is poorly known in Parmelia s. lat. Here, we studied the diversity of Trebouxia microalgae associated with 159 thalli collected from 30 locations, including nine Parmelia spp.: P. barrenoae, P. encryptata, P. ernstiae, P. mayi, P. omphalodes, P. saxatilis, P. serrana, P. submontana, and P. sulcata. The mycobionts were studied by carrying out phylogenetic analyses of the nrITS. Microalgae genetic diversity was examined by using both nrITS and LSU rDNA markers. To evaluate putative species boundaries, three DNA species delimitation analyses were performed on Trebouxia and Parmelia. All analyses clustered the mycobionts into two main groups: PSULgp and PSAXgp. Species delimitation identified 13 fungal and 15 algal species-level lineages. To identify patterns in specificity and selectivity, the diversity and abundance of the phycobionts were identified for each Parmelia species. High specificity of each Parmelia group for a given Trebouxia clade was observed; PSULgp associated only with clade I and PSAXgp with clade S. However, the degree of specificity is different within each group, since the PSAXgp mycobionts were less specific and associated with 12 Trebouxia spp., meanwhile those of PSULgp interacted only with three Trebouxia spp. Variation-partitioning analyses were conducted to detect the relative contributions of climate, geography, and symbiotic partner to phycobiont and mycobiont distribution patterns. Both analyses explained unexpectedly high portions of variability (99 and 98%) and revealed strong correlations between the fungal and algal diversity. Network analysis discriminated seven ecological clusters. Even though climatic conditions explained the largest proportion of the variation among these clusters, they seemed to show indifference relative to climatic parameters. However, the cluster formed by P. saxatilis A/P. saxatilis B/Trebouxia sp. 2/Trebouxia sp. S02/Trebouxia sp. 3A was identified to prefer cold-temperate as well as humid summer environments.
Collapse
Affiliation(s)
- Patricia Moya
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Arantzazu Molins
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Pradeep K. Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Salvador Chiva
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Cristina Dumitru
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Maria Carmen Molina
- Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Eva Barreno
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| |
Collapse
|