1
|
Salih BA, Abdullah BH. Comparative Immunohistochemical Analysis of Craniopharyngioma and Ameloblastoma: Insights into Odontogenic Differentiation. Diagnostics (Basel) 2024; 14:2315. [PMID: 39451638 PMCID: PMC11506693 DOI: 10.3390/diagnostics14202315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Histopathological similarities between craniopharyngioma (CP) and ameloblastoma (AB) have long been recognized, particularly the shared features of palisading columnar epithelium and stellate reticulum-like areas. This study aimed to investigate potential odontogenic differentiation in CP akin to AB using immunohistochemical odontogenic markers. METHODS We analyzed AMELX, ODAM, and CK19 expression in 44 cases (20 CP and 24 AB). RESULTS While AMELX and ODAM showed diffuse strong positive expression in both tumors with no significant statistical differences, CK19 expression was notably higher in CP. CONCLUSION The markers AMELX and ODAM associated with odontogenic differentiation exhibited similar profiles in both tumors due to shared similar embryological origins. Notably, CK19, a biomarker of odontogenic epithelium, showed even higher expression, suggesting distinct pathways. These findings offer insights into tumor biology and may aid in diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Ban A. Salih
- College of Dentistry, University of Baghdad, Baghdad 10071, Iraq;
| | | |
Collapse
|
2
|
Mongkolpathumrat P, Pikwong F, Phutiyothin C, Srisopar O, Chouyratchakarn W, Unnajak S, Nernpermpisooth N, Kumphune S. The secretory leukocyte protease inhibitor (SLPI) in pathophysiology of non-communicable diseases: Evidence from experimental studies to clinical applications. Heliyon 2024; 10:e24550. [PMID: 38312697 PMCID: PMC10835312 DOI: 10.1016/j.heliyon.2024.e24550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Non-communicable diseases (NCDs) are a worldwide health issue because of their prevalence, negative impacts on human welfare, and economic costs. Protease enzymes play important roles in viral and NCD diseases. Slowing disease progression by inhibiting proteases using small-molecule inhibitors or endogenous inhibitory peptides appears to be crucial. Secretory leukocyte protease inhibitor (SLPI), an inflammatory serine protease inhibitor, maintains protease/antiprotease balance. SLPI is produced by host defense effector cells during inflammation to prevent proteolytic enzyme-induced tissue damage. The etiology of noncommunicable illnesses is linked to SLPI's immunomodulatory and tissue regeneration roles. Disease phases are associated with SLPI levels and activity changes in regional tissue and circulation. SLPI has been extensively evaluated in inflammation, but rarely in NCDs. Unfortunately, the thorough evaluation of SLPI's pathophysiological functions in NCDs in multiple research models has not been published elsewhere. In this review, data from PubMed from 2014 to 2023 was collected, analysed, and categorized into in vitro, in vivo, and clinical studies. According to the review, serine protease inhibitor (SLPI) activity control is linked to non-communicable diseases (NCDs) and other illnesses. Overexpression of the SLPI gene and protein may be a viable diagnostic and therapeutic target for non-communicable diseases (NCDs). SLPI is also cytoprotective, making it a unique treatment. These findings suggest that future research should focus on these pathways using advanced methods, reliable biomarkers, and therapy approaches to assess susceptibility and illness progression. Implications from this review will help pave the way for a new therapeutic target and diagnosis marker for non-communicable diseases.
Collapse
Affiliation(s)
- Podsawee Mongkolpathumrat
- Cardiovascular and Thoracic Technology Program, Chulabhorn International College of Medicine (CICM), Thammasat University (Rangsit Center), Pathumthani 12120, Thailand
| | - Faprathan Pikwong
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chayanisa Phutiyothin
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Onnicha Srisopar
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Wannapat Chouyratchakarn
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Sasimanas Unnajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | - Nitirut Nernpermpisooth
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000 Thailand
| | - Sarawut Kumphune
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
3
|
Ikezaki S, Otsu K, Kumakami-Sakano M, Harada H. A novel junctional epithelial cell line, mHAT-JE01, derived from incisor epithelial cells. J Oral Biosci 2023; 65:47-54. [PMID: 36693475 DOI: 10.1016/j.job.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Junctional epithelium (JE) connects the tooth surface and gingival epithelium and adheres directly to the tooth enamel. JE plays an important role as a barrier preventing the invasion of exogenous bacteria and substances. However, the cellular characteristics of this epithelium have not been adequately described, because no useful in vitro experimental model exists for JE. METHODS We generated a novel JE cell line, mHAT-JE01, using naturally immortalized dental epithelium derived from incisor labial cervical cells and by selecting cells that adhered to apatite. mHAT-JE01 was characterized by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction and compared with the gingival epithelial cell line, mOE-PE01. RESULTS The mHAT-JE01 cells had a higher capacity for producing JE-specific markers than oral mucous epithelial cells. In addition, the presence of lipopolysaccharides from Porphyromonas gingivalis downregulated the expression of JE protein markers in mHAT-JE01 cells. CONCLUSIONS This cell line is stable and presents the opportunity to characterize JE efficiently, which is essential for the prevention and treatment of periodontal disease.
Collapse
Affiliation(s)
- Shojiro Ikezaki
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Mika Kumakami-Sakano
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan.
| |
Collapse
|
4
|
Hou M, Liu S, Yan K, Sun Z, Li S. Downregulation of Odontogenic Ameloblast-associated Protein in the Progression of Periodontal Disease Affects Cell Adhesion, Proliferation, and Migration. Arch Oral Biol 2022; 145:105588. [DOI: 10.1016/j.archoralbio.2022.105588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
|
5
|
Zhu S, Xiang C, Charlesworth O, Bennett S, Zhang S, Zhou M, Kujan O, Xu J. The versatile roles of odontogenic ameloblast-associated protein in odontogenesis, junctional epithelium regeneration and periodontal disease. Front Physiol 2022; 13:1003931. [PMID: 36117697 PMCID: PMC9478555 DOI: 10.3389/fphys.2022.1003931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Junctional epithelium (JE) is a vital epithelial component which forms an attachment to the tooth surface at the gingival sulcus by the adhesion of protein complexes from its basal layer. Disruption of the JE is associated with the development of gingivitis, periodontal disease, and alveolar bone loss. Odontogenic ameloblast-associated (ODAM) is comprised of a signal peptide and an ODAM protein with 12 putative glycosylation sites. It is expressed during odontogenesis by maturation stage ameloblasts and is incorporated into the enamel matrix during the formation of outer and surface layer enamel. ODAM, as a secreted protein which is accumulated at the interface between basal lamina and enamel, mediates the adhesion of the JE to the tooth surface; and is involved with extracellular signalling of WNT and ARHGEF5-RhoA, as well as intracellular signalling of BMP-2-BMPR-IB-ODAM. ODAM is also found to be highly expressed in salivary glands and appears to have implications for the regulation of formation, repair, and regeneration of the JE. Bioinformatics and research data have identified the anti-cancer properties of ODAM, indicating its potential both as a prognostic biomarker and therapeutic target. Understanding the biology of ODAM will help to design therapeutic strategies for periodontal and dental disorders.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| | - Chuan Xiang
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Oscar Charlesworth
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Samuel Bennett
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Sijuan Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Maio Zhou
- Department of Stomatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| |
Collapse
|
6
|
Tsuruya Y, Yamaguchi A, Yamazaki-Takai M, Zhenyu J, Takai H, Nakayama Y, Ogata Y. Interleukin-1β regulates odontogenic ameloblast-associated protein gene transcription in human gingival epithelial cells. Odontology 2022; 110:557-568. [PMID: 35179670 DOI: 10.1007/s10266-022-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/30/2022] [Indexed: 11/30/2022]
Abstract
Junction epithelium (JE) is located apical to the bottom of the gingival sulcus and binds enamel to hemidesmosomes to protect the periodontal tissue from bacterial infection. Function of odontogenic ameloblast-associated protein (ODAM) is suggested by its expression sites (JE and maturation stage ameloblasts) to be involved in the adhesion between the JE and enamel, and odontogenesis. To analyze the changes in ODAM gene and protein expressions in inflamed gingiva, Ca9-22 gingival epithelial cells were stimulated with 1 ng/ml interleukin-1β (IL-1β) for 3-24 h, and ODAM mRNA and protein levels were analyzed by real-time PCR and Western blotting. Luciferase (LUC) constructs were made ligating various lengths of human ODAM gene promoters and performed LUC analyses in Ca9-22 cells. Gel shift and chromatin immunoprecipitation (ChIP) assays were performed. IL-1β induced ODAM mRNA and protein levels at 6-24 h. IL-1β increased LUC activities of the ODAM gene promoter constructs from - 85 to - 950. These activities were blocked by protein kinase A, tyrosine kinase, mitogen-activated protein (MAP) kinase kinase and phosphoinositide 3-kinase inhibitors. Gel shift and ChIP assays showed that IL-1β induced CCAAT/enhancer-binding protein (C/EBP) β and Yin Yang1 (YY1) binding to C/EBP1, 2, 3, and YY1 elements. These data indicate that IL-1β stimulates ODAM gene transcription mediated through C/EBP1, C/EBP2, C/EBP3, and YY1 elements in the human ODAM gene promoter.
Collapse
Affiliation(s)
- Yuto Tsuruya
- Departments of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Arisa Yamaguchi
- Departments of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Mizuho Yamazaki-Takai
- Departments of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Jin Zhenyu
- Departments of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Hideki Takai
- Departments of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Yohei Nakayama
- Departments of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Yorimasa Ogata
- Departments of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan. .,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan.
| |
Collapse
|
7
|
Yuan DF, Wang HR, Wang ZF, Liang GH, Xing WQ, Qin JJ. CircRNA CircZMYM4 inhibits the growth and metastasis of lung adenocarcinoma via the miR-587/ODAM pathway. Biochem Biophys Res Commun 2021; 580:100-106. [PMID: 34634673 DOI: 10.1016/j.bbrc.2021.09.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Circular RNAs (circRNAs) are known to regulate tumorigenesis. In this study, circRNAs microarray was used to analyze the circRNA expression in lung adenocarcinoma (LUAD) tissues, and CircRNA zinc finger MYM-type containing 4(circZMYM4) was selected for further analysis. In this study, we detected circZMYM4 expression in LUAD specimens and cell lines using RT-PCR. The expression of circZMYM4 was further verified in the GEO datasets and TCGA datasets. Gain-of-function and loss-of-function experiments were used to analyze the effects of circZMYM4 on LUAD in vivo and in vitro. The relationship between miR-587 and circZMYM4 or ODAM was predicted by bioinformatics tools and confirmed using dual-luciferase reporter assays and RNA-pull down. We found that circZMYM4 was distinctly down-regulated in LUAD tissues and cell lines. Functional assays revealed that circZMYM4 overexpression suppressed LUAD cell proliferation, metastasis and suppressed apoptosis, while miR-587 overexpression could weaken these effects. Importantly, circZMYM4 upregulated ODAM expression via sponging miR-587 to suppress LUAD progression. ODAM knockdown could reverse the repressive effect of circZMYM4 overexpression on cell proliferation, migration and invasion abilities. Overall, circZMYM4 regulates the miR-587/ODAM axis to suppress LUAD progression, which may become a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Dong-Feng Yuan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hao-Ran Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zong-Fei Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guang-Hui Liang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wen-Qun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Jun Qin
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Thoracic Surgery, The Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Tsuruya Y, Yamaguchi A, Yamazaki-Takai M, Mezawa M, Takai H, Nakayama Y, Ogata Y. Transcriptional regulation of human odontogenic ameloblast-associated protein gene by tumor necrosis factor-α. Inflamm Res 2021; 71:119-129. [PMID: 34787682 DOI: 10.1007/s00011-021-01523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Odontogenic ameloblast-associated protein (ODAM) is produced by maturation stage ameloblasts and junctional epithelium (JE). The function of ODAM is thought to be involved in the attachment of teeth and JE. To elucidate transcriptional regulation of human ODAM gene in inflamed gingiva, we have analyzed the effects of TNF-α on the expression of ODAM gene in Ca9-22 and Sa3 gingival epithelial cells. MATERIALS AND METHODS Total RNAs were extracted from Ca9-22 and Sa3 cells after stimulation by TNF-α (10 ng/ml). ODAM mRNA and protein levels were analyzed by qPCR and Western blotting. Luciferase (LUC) analyses were performed using LUC constructs inserted in various lengths of ODAM gene promoter. Gel shift and chromatin immunoprecipitation (ChIP) assays were carried out. RESULTS TNF-α increased ODAM mRNA and protein levels at 3 to 24 h. TNF-α induced LUC activities of the ODAM gene promoter constructs, and the activities were inhibited by protein kinase A, tyrosine kinase, MEK1/2, PI3-kinase and NF-κB inhibitors. Gel shift and ChIP assays revealed that TNF-α increased CCAAT/enhancer-binding protein (C/EBP) β and Yin Yang1 (YY1) binding to three kinds of C/EBPs and YY1 elements. CONCLUSION These results demonstrate that TNF-α stimulates ODAM gene transcription via C/EBPs and YY1 elements in the human ODAM gene promoter.
Collapse
Affiliation(s)
- Yuto Tsuruya
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Arisa Yamaguchi
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Mizuho Yamazaki-Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Masaru Mezawa
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan. .,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.
| |
Collapse
|