1
|
Zhang G, Tao Z, Li B, Zhu J, Mo L, Cao Z, Du M, He H. CircHIPK3 regulates cementoblast differentiation via the miR-10b-5p/DOHH/NF-κB axis. Cell Signal 2024; 124:111427. [PMID: 39304099 DOI: 10.1016/j.cellsig.2024.111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Intact cementum is vital for tooth stability and health. Cementoblasts, which line the root surface, are responsible for cementum formation. Recent evidence suggests that circular RNAs (circRNAs) are involved in various cellular functions and may have clinical applications. Although circHIPK3 has been shown to participate in osteogenesis, its role in cementoblast differentiation and mineralization is not well understood. METHODS The ring structure of circHIPK3 was confirmed using Sanger sequencing and an actinomycin D assay. Subcellular localization of circHIPK3 was assessed using a nucleus-cytoplasm separation assay. RT-qPCR was employed to analyze circHIPK3 expression during cementoblast differentiation and following TNF-α treatment. In vivo, periapical lesions were induced in mouse mandibular first molars to mimic an inflammatory environment, and circHIPK3 expression was evaluated. The interaction of the circHIPK3/miR-10b-5p/DOHH axis was explored through RNA pull-down assays, bioinformatics analysis, and dual-luciferase reporter assays. The effects on cementoblast differentiation and mineralization were assessed by measuring osteogenic markers, alkaline phosphatase (ALP) activity, ALP staining, and alizarin red S staining. RESULTS CircHIPK3 was predominantly located in the cytoplasm of cementoblasts, and its expression was significantly upregulated during cementoblast differentiation. Knockdown of circHIPK3 inhibited cementoblast differentiation and mineralization, whereas its overexpression promoted these processes. Mechanistically, circHIPK3 upregulated DOHH expression by sponging miR-10b-5p, thereby enhancing cementoblast differentiation and mineralization. The NF-κB pathway was found to act downstream of the circHIPK3/miR-10b-5p/DOHH axis in these processes. Additionally, circHIPK3 expression was significantly downregulated in inflammatory environments both in vitro and in vivo. Forced overexpression of circHIPK3 mitigated the inhibitory effects of TNF-α on cementoblast differentiation and mineralization. CONCLUSION CircHIPK3 acts as a positive regulator of cementoblast differentiation and mineralization through the miR-10b-5p/DOHH/NF-κB axis, playing a crucial role in both normal and pathological cementogenesis.
Collapse
Affiliation(s)
- Gengming Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhendong Tao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Biao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiaqi Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lijuan Mo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mingyuan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Wu Y, Li B, Deng D, Zhou H, Liu M, Ai H, Xin Y, Hua W, Zhao L, Li L. Circ_0036490 and DKK1 competitively bind miR-29a to promote lipopolysaccharides-induced human gingival fibroblasts injury. Autoimmunity 2024; 57:2312927. [PMID: 38321980 DOI: 10.1080/08916934.2024.2312927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
MicroRNA (miRNA) plays a regulatory role in periodontitis. This study aimed to explore whether miR-29a could affect lipopolysaccharides (LPSs)-induced injury in human gingival fibroblasts (HGFs) through the competitive endogenous RNAs (ceRNA) mechanism. Periodontal ligament (PDL) tissues and HGFs were derived from patients with periodontitis and healthy volunteers. Periodontitis cell model was established by treating HGFs with LPS. Expression levels of circ_0036490, miR-29a, and DKK1 were evaluated by the reverse transcription quantitative real-time PCR (RT-qPCR) method. Western blotting assay was performed to assess protein expression levels of pyroptosis-related proteins and Wnt signalling related proteins. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Concentration of lactate dehydrogenase (LDH), interleukin (IL)-1β, and IL-18 were determined by Enzyme-linked immunosorbent assay (ELISA). Pyroptosis rate were determined by flow cytometry assay to evaluate pyroptosis. The interaction between miR-29a and circ_0036490 or DKK1 was verified by dual-luciferase reporter and RNA pull-down assays. MiR-29a expression was lower in PDL tissues of patients with periodontitis than that in healthy group; likewise, miR-29a was also downregulated in LPS-treated HGFs. Overexpression of miR-29a increased cell viability and decreased pyroptosis of HGFs induced by LPS while inhibition of miR-29a exerted the opposite role. MiR-29a binds to circ_0036490 and elevation of circ_0036490 contributed to dysfuntion of LPS-treated HGFs and reversed the protection function of elevated miR-29a. In addition, miR-29a targets DKK1. Overexpression of DKK1 abrogated the effects of overexpressed miR-29a on cell vaibility, pyroptosis, and protein levels of Wnt signalling pathway of LPS-treated HGFs. Circ_0036490 and DKK1 competitively bind miR-29a to promote LPS-induced HGF injury in vitro. Wnt pathway inactivated by LPS was activated by miR-29a. Thence, miR-29a may be a promising target for periodontitis.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Disi Deng
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongling Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Min Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huangping Ai
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilin Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Weihan Hua
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Li Li
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Ding W, Ding L, Lu Y, Sun W, Wang Y, Wang J, Gao Y, Li M. Circular RNA-circLRP6 protects cardiomyocyte from hypoxia-induced apoptosis by facilitating hnRNPM-mediated expression of FGF-9. FEBS J 2024; 291:1246-1263. [PMID: 38105623 DOI: 10.1111/febs.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/30/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Coronary atherosclerosis-induced myocardial ischemia leads to cardiomyocyte apoptosis. The regulatory mechanisms for cardiomyocyte apoptosis have not been fully understood. Circular RNAs are non-coding RNAs which play important roles in heart function maintenance and progression of heart diseases by regulating gene transcription and protein translation. Here, we reported a conserved cardiac circular RNA, which is generated from the second exon of LRP6 and named circLRP62-2 . CircLRP62-2 can protect cardiomyocyte from hypoxia-induced apoptosis. The expression of circLRP62-2 in cardiomyocytes was down-regulated under hypoxia, while forced expression of circLRP62-2 inhibited cell apoptosis. Normally, circLRP62-2 was mainly localized in the nucleus. Under hypoxia, circLRP62-2 is associated with heterogeneous nuclear ribonucleoprotein M (hnRNPM) to be translocated into the cytoplasm. It recruited hnRNPM to fibroblast growth factor 9 (FGF9) mRNA to enhance the expression of FGF9 protein, promoting hypoxia-adaption and viability of cardiomyocytes. In summary, this study uncovers a new inhibitor of apoptosis and reveals a novel anti-apoptotic pathway composed of circLRP62-2 , hnRNPM, and FGF9, which may provide therapeutic targets for coronary heart disease and ischemic myocardial injury.
Collapse
Affiliation(s)
- Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, China
| | - Lin Ding
- School of Basic Medical Sciences, Qingdao University, China
| | - Yijian Lu
- School of Basic Medical Sciences, Qingdao University, China
| | - Weihan Sun
- School of Basic Medical Sciences, Qingdao University, China
| | - Yu Wang
- School of Basic Medical Sciences, Qingdao University, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, China
| | - Yufang Gao
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, China
| | - Mengyang Li
- School of Basic Medical Sciences, Qingdao University, China
| |
Collapse
|
4
|
Tani S, Okada H, Onodera S, Chijimatsu R, Seki M, Suzuki Y, Xin X, Rowe DW, Saito T, Tanaka S, Chung UI, Ohba S, Hojo H. Stem cell-based modeling and single-cell multiomics reveal gene-regulatory mechanisms underlying human skeletal development. Cell Rep 2023; 42:112276. [PMID: 36965484 DOI: 10.1016/j.celrep.2023.112276] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/19/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023] Open
Abstract
Although the skeleton is essential for locomotion, endocrine functions, and hematopoiesis, the molecular mechanisms of human skeletal development remain to be elucidated. Here, we introduce an integrative method to model human skeletal development by combining in vitro sclerotome induction from human pluripotent stem cells and in vivo endochondral bone formation by implanting the sclerotome beneath the renal capsules of immunodeficient mice. Histological and scRNA-seq analyses reveal that the induced bones recapitulate endochondral ossification and are composed of human skeletal cells and mouse circulatory cells. The skeletal cell types and their trajectories are similar to those of human embryos. Single-cell multiome analysis reveals dynamic changes in chromatin accessibility associated with multiple transcription factors constituting cell-type-specific gene-regulatory networks (GRNs). We further identify ZEB2, which may regulate the GRNs in human osteogenesis. Collectively, these results identify components of GRNs in human skeletal development and provide a valuable model for its investigation.
Collapse
Affiliation(s)
- Shoichiro Tani
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Hiroyuki Okada
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Ryota Chijimatsu
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Xiaonan Xin
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - David W Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ung-Il Chung
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shinsuke Ohba
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; Department of Oral Anatomy and Developmental Biology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.
| | - Hironori Hojo
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8655, Japan.
| |
Collapse
|
5
|
Huang H, Wang X, Liao H, Ma L, Jiang C, Yao S, Liu H, Cao Z. Expression profile analysis of long noncoding
RNA
and messenger
RNA
during mouse cementoblast mineralization. J Periodontal Res 2022; 57:1159-1168. [DOI: 10.1111/jre.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Hantao Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
| | - Xiaoxuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontology, School and Hospital of Stomatology Wuhan University Wuhan China
| | - Haiqing Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontics and Oral Medicine, College of Stomatology Guangxi Medical University Nanning China
| | - Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontology, School and Hospital of Stomatology Wuhan University Wuhan China
| | - Chenxi Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
| | - Siqi Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
| | - Huan Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontology, School and Hospital of Stomatology Wuhan University Wuhan China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontology, School and Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
6
|
Circ_0099630 Participates in SPRY1-Mediated Repression in Periodontitis. Int Dent J 2022; 73:136-143. [PMID: 35933226 PMCID: PMC9875226 DOI: 10.1016/j.identj.2022.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Periodontitis is chronic inflammation that causes damage to periodontal tissues and cementum. It has been reported that circular RNA hsa_circ_0099630 (circ_0099630) was overexpressed in gingival samples from patients with periodontitis. However, the function of circ_0099630 on the osteogenic differentiation of periodontal ligament cells (PDLCs) in periodontitis remains unclear. METHODS Periodontal ligaments from patients with periodontitis and third molars (termed wisdom teeth) were utilised to isolate inflamed PDLCs (iPDLCs) and healthy PDLCs (hPDLCs). Expression levels of circ_0099630 in isolated PDLCs were assessed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Effects of circ_0099630 overexpression and silencing on iPDLC viability, proliferation, and cycle progression were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. The osteogenic differentiation was detected by analysing the alkaline phosphatase (ALP) activity, mineralisation amount, and osteogenic markers osterix (OSX), ALP, and RUNX2 in iPDLCs. The regulatory mechanism of circ_0099630 was predicted by bioinformatics analysis and validated by dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. RESULTS Circ_0099630 was underexpressed in iPDLCs compared to hPDLCs. Overexpression of circ_0099630 repressed iPDLC proliferation and osteogenic differentiation, but circ_0099630 silencing exerted an opposing effect. Mechanically, circ_0099630 sponged miR-212-5p to block the inhibiting effect of miR-212-5p on SPRY1. Elevated expression of SPRY1 partly reversed the promoting effect of circ_0099630 knockdown on iPDLC proliferation and osteogenic differentiation. CONCLUSIONS Circ_0099630 curbed PDLC proliferation and osteogenic differentiation through elevating SPRY1 expression via sponging miR-212-5p in periodontitis.
Collapse
|
7
|
Yu W, Gu Q, Wu D, Zhang W, Li G, Lin L, Lowe JM, Hu S, Li TW, Zhou Z, Miao MZ, Gong Y, Zhao Y, Lu E. Identification of potentially functional circRNAs and prediction of circRNA-miRNA-mRNA regulatory network in periodontitis: Bridging the gap between bioinformatics and clinical needs. J Periodontal Res 2022; 57:594-614. [PMID: 35388494 PMCID: PMC9325354 DOI: 10.1111/jre.12989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Background and Objective Periodontitis is a multifactorial chronic inflammatory disease that can lead to the irreversible destruction of dental support tissues. As an epigenetic factor, the expression of circRNA is tissue‐dependent and disease‐dependent. This study aimed to identify novel periodontitis‐associated circRNAs and predict relevant circRNA‐periodontitis regulatory network by using recently developed bioinformatic tools and integrating sequencing profiling with clinical information for getting a better and more thorough image of periodontitis pathogenesis, from gene to clinic. Material and Methods High‐throughput sequencing and RT‐qPCR were conducted to identify differentially expressed circRNAs in gingival tissues from periodontitis patients. The relationship between upregulated circRNAs expression and probing depth (PD) was performed using Spearman's correlation analysis. Bioinformatic analyses including GO analysis, circRNA‐disease association prediction, and circRNA‐miRNA‐mRNA network prediction were performed to clarify potential regulatory functions of identified circRNAs in periodontitis. A receiver‐operating characteristic (ROC) curve was established to assess the diagnostic significance of identified circRNAs. Results High‐throughput sequencing identified 70 differentially expressed circRNAs (68 upregulated and 2 downregulated circRNAs) in human periodontitis (fold change >2.0 and p < .05). The top five upregulated circRNAs were validated by RT‐qPCR that had strong associations with multiple human diseases, including periodontitis. The upregulation of circRNAs were positively correlated with PD (R = .40–.69, p < .05, moderate). A circRNA‐miRNA‐mRNA network with the top five upregulated circRNAs, differentially expressed mRNAs, and overlapped predicted miRNAs indicated potential roles of circRNAs in immune response, cell apoptosis, migration, adhesion, and reaction to oxidative stress. The ROC curve showed that circRNAs had potential value in periodontitis diagnosis (AUC = 0.7321–0.8667, p < .05). Conclusion CircRNA‐disease associations were predicted by online bioinformatic tools. Positive correlation between upregulated circRNAs, circPTP4A2, chr22:23101560‐23135351+, circARHGEF28, circBARD1 and circRASA2, and PD suggested function of circRNAs in periodontitis. Network prediction further focused on downstream targets regulated by circRNAs during periodontitis pathogenesis.
Collapse
Affiliation(s)
- Weijun Yu
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Qisheng Gu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Department of Immunology, Bio Sorbonne Paris Cité, University of Paris, Paris, France
| | - Di Wu
- Division of Oral and Craniofacial Biomedicine, University of North Carolina Adams School of Dentistry, Chapel Hill, North Carolina, USA.,Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Weiqi Zhang
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Li
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Lu Lin
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jared M Lowe
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shucheng Hu
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tia Wenjun Li
- Division of Oral and Craniofacial Biomedicine, University of North Carolina Adams School of Dentistry, Chapel Hill, North Carolina, USA.,Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhen Zhou
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Z Miao
- Division of Oral and Craniofacial Biomedicine, University of North Carolina Adams School of Dentistry, Chapel Hill, North Carolina, USA
| | - Yuhua Gong
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifei Zhao
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|