1
|
Chen H, Song G, Xu T, Meng C, Zhang Y, Xin T, Yu T, Lin Y, Han B. Biomaterial Scaffolds for Periodontal Tissue Engineering. J Funct Biomater 2024; 15:233. [PMID: 39194671 DOI: 10.3390/jfb15080233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Advanced periodontitis poses a significant threat to oral health, causing extensive damage and loss of both hard and soft periodontal tissues. While traditional therapies such as scaling and root planing can effectively halt the disease's progression, they often fail to fully restore the original architecture and function of periodontal tissues due to the limited capacity for spontaneous regeneration. To address this challenge, periodontal tissue engineering has emerged as a promising approach. This technology centers on the utilization of biomaterial scaffolds, which function as three-dimensional (3D) templates or frameworks, supporting and guiding the regeneration of periodontal tissues, including the periodontal ligament, cementum, alveolar bone, and gingival tissue. These scaffolds mimic the extracellular matrix (ECM) of native periodontal tissues, aiming to foster cell attachment, proliferation, differentiation, and, ultimately, the formation of new, functional periodontal structures. Despite the inherent challenges associated with preclinical testing, the intensification of research on biomaterial scaffolds, coupled with the continuous advancement of fabrication technology, leads us to anticipate a significant expansion in their application for periodontal tissue regeneration. This review comprehensively covers the recent advancements in biomaterial scaffolds engineered specifically for periodontal tissue regeneration, aiming to provide insights into the current state of the field and potential directions for future research.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Guangying Song
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianmin Xu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Chenda Meng
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianyi Xin
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
2
|
Campagna A, Baima G, Romano F, Amoroso F, Mussano F, Oteri G, Aimetti M, Peditto M. Orally Derived Stem Cell-Based Therapy in Periodontal Regeneration: A Systematic Review and Meta-Analysis of Randomized Clinical Studies. Dent J (Basel) 2024; 12:145. [PMID: 38786543 PMCID: PMC11120617 DOI: 10.3390/dj12050145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The present systematic review was performed to assess the application of orally derived stem cells in periodontal regenerative therapy, and because of this, the following PICO question was proposed: "In patients with periodontitis, can the adjunctive use of orally derived stem cells provide additional clinical and radiographic benefits for periodontal regeneration?". Randomized clinical studies were electronically and manually searched up until December 2023. Quantitative analyses were performed with the aim of evaluating the mean differences (MDs) between the treatment and control groups in terms of clinical attachment level (CAL) gain, probing pocket depth (PPD) reduction, gingival recession (GR), and radiographic bone gain (RBG) using random effect models. A total of seven studies were selected for the systematic review. Meta-analyses excluding studies with a high risk of bias highlighted a non-statistically significant result for the use of stem cells when compared to the control groups in terms of CAL gain [MD = 1.05; 95% CI (-0.88, 2.97) p = 0.29] and PPD reduction [MD = 1.32; 95% CI (-0.25, 2.88) p = 0.10]. The same also applied to GR [MD = -0.08; 95% CI (-0.79, 0.63) p = 0.83] and RBG [MD = 0.50; 95% CI (-0.88, 1.88) p = 0.48]. Based on the high heterogeneity, there is not enough evidence to consider the adjunctive application of orally derived mesenchymal stem cells as a preferential approach for periodontal regenerative treatment, as compared to standard procedures.
Collapse
Affiliation(s)
- Alessandro Campagna
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (A.C.); (G.O.); (M.P.)
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Torino, Italy; (G.B.); (F.R.); (F.A.); (M.A.)
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Torino, Italy; (G.B.); (F.R.); (F.A.); (M.A.)
| | - Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Torino, Italy; (G.B.); (F.R.); (F.A.); (M.A.)
| | - Federico Amoroso
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Torino, Italy; (G.B.); (F.R.); (F.A.); (M.A.)
- Politecnico di Torino, 10129 Torino, Italy
| | - Federico Mussano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Torino, Italy; (G.B.); (F.R.); (F.A.); (M.A.)
| | - Giacomo Oteri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (A.C.); (G.O.); (M.P.)
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Torino, Italy; (G.B.); (F.R.); (F.A.); (M.A.)
| | - Matteo Peditto
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (A.C.); (G.O.); (M.P.)
| |
Collapse
|
3
|
Balachandran Megha K, Syama S, Padmalayathil Sangeetha V, Vandana U, Oyane A, Valappil Mohanan P. Development of a 3D multifunctional collagen scaffold impregnated with peptide LL-37 for vascularised bone tissue regeneration. Int J Pharm 2024; 652:123797. [PMID: 38199447 DOI: 10.1016/j.ijpharm.2024.123797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Bone is a highly dynamic connective tissue that provides structural support, locomotion and acts as a shield for many vital organs from damage. Bone inherits the ability to heal after non-severe injury. In case of severe bone abnormalities due to trauma, infections, genetic disorders and tumors, there is a demand for a scaffold that can enhance bone formation and regenerate the lost bone tissue. In this study, a 3D collagen scaffold (CS) was functionalized and assessed under in vitro and in vivo conditions. For this, a collagen scaffold coated with hydroxyapatite (Ap-CS) was developed and loaded with a peptide LL-37. The physico-chemical characterisation confirmed the hydroxyapatite coating on the outer and inner surfaces of Ap-CS. In vitro studies confirmed that LL-37 loaded Ap-CS promotes osteogenic differentiation of human osteosarcoma cells without showing significant cytotoxicity. The efficacy of the LL-37 loaded Ap-CS for bone regeneration was evaluated at 4 and 12 weeks post-implantation by histopathological and micro-CT analysis in rabbit femur defect model. The implanted LL-37 loaded Ap-CS facilitated the new bone formation at 4 weeks compared with Ap-CS without LL-37. The LL-37 loaded Ap-CS incorporating apatite and peptide LL-37 would be useful as a multifunctional scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Kizhakkepurakkal Balachandran Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - Santhakumar Syama
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Vijayan Padmalayathil Sangeetha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - Unnikrishnan Vandana
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Parayanthala Valappil Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
4
|
Pal A, Oyane A, Nakamura M, Koga K, Nishida E, Miyaji H. Fluoride-Incorporated Apatite Coating on Collagen Sponge as a Carrier for Basic Fibroblast Growth Factor. Int J Mol Sci 2024; 25:1495. [PMID: 38338772 PMCID: PMC10855894 DOI: 10.3390/ijms25031495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Coating layers consisting of a crystalline apatite matrix with immobilized basic fibroblast growth factor (bFGF) can release bFGF, thereby enhancing bone regeneration depending on their bFGF content. We hypothesized that the incorporation of fluoride ions into apatite crystals would enable the tailored release of bFGF from the coating layer depending on the layer's fluoride content. In the present study, coating layers consisting of fluoride-incorporated apatite (FAp) crystals with immobilized bFGF were coated on a porous collagen sponge by a precursor-assisted biomimetic process using supersaturated calcium phosphate solutions with various fluoride concentrations. The fluoride content in the coating layer increased with the increasing fluoride concentration of the supersaturated solution. The increased fluoride content in the coating layer reduced its solubility and suppressed the burst release of bFGF from the coated sponge into a physiological salt solution. The bFGF release was caused by the partial dissolution of the coating layer and, thus, accompanied by the fluoride release. The concentrations of released bFGF and fluoride were controlled within the estimated effective ranges in enhancing bone regeneration. These findings provide useful design guidelines for the construction of a mineralized, bFGF-releasing collagen scaffold that would be beneficial for bone tissue engineering, although further in vitro and in vivo studies are warranted.
Collapse
Affiliation(s)
- Aniruddha Pal
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan; (A.P.); (M.N.); (K.K.)
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan; (A.P.); (M.N.); (K.K.)
| | - Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan; (A.P.); (M.N.); (K.K.)
| | - Kenji Koga
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan; (A.P.); (M.N.); (K.K.)
| | - Erika Nishida
- Section for Clinical Education, Faculty of Dental Medicine, Hokkaido University, N13 W7 Kita-ku, Sapporo 060-8586, Japan; (E.N.); (H.M.)
| | - Hirofumi Miyaji
- Section for Clinical Education, Faculty of Dental Medicine, Hokkaido University, N13 W7 Kita-ku, Sapporo 060-8586, Japan; (E.N.); (H.M.)
| |
Collapse
|
5
|
Yoshino Y, Miyaji H, Nishida E, Kanemoto Y, Hamamoto A, Kato A, Sugaya T, Akasaka T. Periodontal tissue regeneration by recombinant human collagen peptide granules applied with β-tricalcium phosphate fine particles. J Oral Biosci 2023; 65:62-71. [PMID: 36669699 DOI: 10.1016/j.job.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Recombinant human collagen peptide (RCP) is a recombinantly created xeno-free biomaterial enriched in arginine-glycine-aspartic acid sequences with good processability whose use for regenerative medicine applications is under investigation. The biocompatibility and osteogenic ability of RCP granules combined with β-tricalcium phosphate (TCP) submicron particles (β-TCP/RCP) were recently demonstrated. In the present study, β-TCP/RCP was implanted into experimental periodontal tissue defects created in beagles to investigate its regenerative effects. METHODS An RCP solution was lyophilized, granulated, and thermally cross-linked into particles approximately 1 mm in diameter. β-TCP dispersion (1 wt%; 500 μL) was added to 100 mg of RCP granules to form β-TCP/RCP. A three-walled intrabony defect (5 mm × 3 mm × 4 mm) was created on the mesial side of the mandibular first molar and filled with β-TCP/RCP. RESULTS A micro-computed tomography image analysis performed at 8 weeks postoperative showed a significantly greater amount of new bone after β-TCP/RCP grafting (2.2-fold, P < 0.05) than after no grafting. Histological findings showed that the transplanted β-TCP/RCP induced active bone-like tissue formation including tartaric acid-resistant acid phosphatase- and OCN-positive cells as well as bioabsorbability. Ankylosis did not occur, and periostin-positive periodontal ligament-like tissue formation was observed. Histological measurements performed at 8 weeks postoperative revealed that β-TCP/RCP implantation formed 1.7-fold more bone-like tissue and 2.1-fold more periodontal ligament-like tissue than the control condition and significantly suppressed gingival recession and epithelial downgrowth (P < 0.05). CONCLUSIONS β-TCP/RCP implantation promoted bone-like and periodontal ligament-like tissue formation, suggesting its efficacy as a periodontal tissue regenerative material.
Collapse
Affiliation(s)
- Yuto Yoshino
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Erika Nishida
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yukimi Kanemoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Asako Hamamoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akihito Kato
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsukasa Akasaka
- Department of Biomedical Materials and Engineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
Espitia-Quiroz LC, Fernández-Orjuela AL, Anaya-Sampayo LM, Acosta-Gómez AP, Sequeda-Castañeda LG, Gutiérrez-Prieto SJ, Roa-Molina NS, García-Robayo DA. Viability and Adhesion of Periodontal Ligament Fibroblasts on a Hydroxyapatite Scaffold Combined with Collagen, Polylactic Acid-Polyglycolic Acid Copolymer and Platelet-Rich Fibrin: A Preclinical Pilot Study. Dent J (Basel) 2022; 10:dj10090167. [PMID: 36135161 PMCID: PMC9497794 DOI: 10.3390/dj10090167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Conventional periodontal therapy relies on bone regeneration strategies utilizing scaffolds made of diverse materials, among which collagen, to promote cell adhesion and growth. Objective: To evaluate periodontal ligament fibroblast (HPdLF) cell adhesion and viability for periodontal regeneration purposes on hydroxyapatite scaffolds containing collagen (HAp-egg shell) combined with polylactic acid−polyglycolic acid copolymer (PLGA) and Platelet-Rich Fibrin (PRF). Methods: Four variations of the HAp-egg shell were used to seed HPdLF for 24 h and evaluate cell viability through a live/dead assay: (1) (HAp-egg shell/PLGA), (2) (HAp-egg shell/PLGA + collagen), (3) (HAp-egg shell/PLGA + PRF) and (4) (HAp-egg shell/PLGA + PRF + collagen). Cell adhesion and viability were determined using confocal microscopy and quantified using central tendency and dispersion measurements; significant differences were determined using ANOVA (p < 0.05). Results: Group 1 presented low cell viability and adhesion (3.70−10.17%); groups 2 and 3 presented high cell viability and low cell adhesion (group 2, 59.2−11.1%, group 3, 58−4.6%); group 4 presented the highest cell viability (82.8%) and moderate cell adhesion (45%) (p = 0.474). Conclusions: The effect of collagen on the HAp-egg shell/PLGA scaffold combined with PRF favored HPdLF cell adhesion and viability and could clinically have a positive effect on bone defect resolution and the regeneration of periodontal ligament tissue.
Collapse
Affiliation(s)
- Leonor C. Espitia-Quiroz
- Resident in Periodontics, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Dentistry Faculty, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, Mexico
| | | | - Lina M. Anaya-Sampayo
- Dentistry Research Center, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
| | - Adriana P. Acosta-Gómez
- Periodontal System Department, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
| | - Luis Gonzalo Sequeda-Castañeda
- Dentistry Research Center, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Chemistry Department, Sciences Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Correspondence: (L.G.S.-C.); (S.J.G.-P.); (D.A.G.-R.)
| | - Sandra Janeth Gutiérrez-Prieto
- Dentistry Research Center, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Dental System Department, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Correspondence: (L.G.S.-C.); (S.J.G.-P.); (D.A.G.-R.)
| | - Nelly S. Roa-Molina
- Dentistry Research Center, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Oral System Department, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
| | - Dabeiba A. García-Robayo
- Dentistry Research Center, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Oral System Department, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Correspondence: (L.G.S.-C.); (S.J.G.-P.); (D.A.G.-R.)
| |
Collapse
|
7
|
Molecular Research on Oral Diseases and Related Biomaterials: A Journey from Oral Cell Models to Advanced Regenerative Perspectives. Int J Mol Sci 2022; 23:ijms23095288. [PMID: 35563679 PMCID: PMC9105421 DOI: 10.3390/ijms23095288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Oral diseases such as gingivitis, periodontitis, and oral cancer affect millions of people worldwide. Much research has been conducted to understand the pathogenetic mechanisms of these diseases and translate this knowledge into therapeutics. This review aims to take the reader on a journey from the initial molecular discoveries to complex regenerative issues in oral medicine. For this, a semi-systematic literature search was carried out in Medline and Web of Science databases to retrieve the primary literature describing oral cell models and biomaterial applications in oral regenerative medicine. First, an in vitro cell model of gingival keratinocytes is discussed, which illustrates patho- and physiologic principles in the context of oral epithelial homeostasis and carcinogenesis and represents a cellular tool to understand biomaterial-based approaches for periodontal tissue regeneration. Consequently, a layered gradient nonwoven (LGN) is described, which demonstrates that the key features of biomaterials serve as candidates for oral tissue regeneration. LGN supports proper tissue formation and obeys the important principles for molecular mechanotransduction. Furthermore, current biomaterial-based tissue regeneration trends, including polymer modifications, cell-based treatments, antimicrobial peptides and optogenetics, are introduced to represent the full spectrum of current approaches to oral disease mitigation and prevention. Altogether, this review is a foray through established and new concepts in oral regenerative medicine and illustrates the process of knowledge translation from basic molecular and cell biological research to future clinical applications.
Collapse
|