1
|
Hinojosa-Gonzalez DE, Saffati G, Orozco Rendon D, La T, Kronstedt S, Muthigi A, Khera M. Regenerative therapies for erectile dysfunction: a systematic review, Bayesian network meta-analysis, and meta-regression. J Sex Med 2024:qdae131. [PMID: 39419772 DOI: 10.1093/jsxmed/qdae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Current guidelines advocate a shared decision-making process approach to erectile dysfunction management, and while there is growing interest in regenerative therapies such as stem cell therapy, platelet-rich plasma injections, and low-intensity shockwave therapy for erectile dysfunction, comparative data on the efficacy of these modalities are limited. AIM This systematic review and network meta-analysis aims to compare stem cell therapy, platelet-rich plasma injections, and low-intensity shockwave therapy for managing erectile dysfunction and quantify their impact on the International Index of Erectile Function (IIEF). METHODS In January 2024, a systematic search of online databases was performed to identify randomized clinical trials related to stem cell therapy, platelet-rich plasma injections, and low-intensity shockwave therapy in erectile dysfunction. Eligible articles reported outcomes using the IIEF score. Data were inputted into Review Manager 5.4 for pairwise meta-analysis. Data were then used to build a network in R Studio. These networks were used to model 200 000 Markov Chains via MonteCarlo sampling. The results are expressed as standardized mean difference (SMD) with 95% credible intervals (CrI). Meta-regression was used to adjust for PDE5is use. OUTCOMES Impact on the International Index of Erectile Function. RESULTS A total of 16 studies involving 907 patients were analyzed. The standardized mean difference (SMD) vs control for stem cell therapy was 0.92 [95% CrI -0.49, 2.3]. For platelet-rich plasma, the SMD vs control was 0.83 [95% CrI 0.15, 1.5], and for low-intensity shockwave therapy, the SMD vs control was 0.84 [95% CrI 0.49, 1.2]. When stratifying low-intensity shockwave therapy by dose, the SMD vs control at 0.15 mJ/mm2 was 1.1 [95% CrI 0.36, 1.9], while at 0.09 mJ/mm2, it was 0.75 [95% CrI 0.26, 1.2]. Meta-regression adjusting for the administration of PDE5 inhibitors yielded non-significant results. CLINICAL IMPLICATIONS The findings suggest that stem cells, platelet-rich plasma, and low intensity shockwave therapy, particularly at 0.15 and 0.09 mJ/mm2, may offer improvements in erectile function. STRENGTHS AND LIMITATIONS The strength is the robust statistical methods. Limitations are in heterogeneity in control groups and follow-up durations among included studies. CONCLUSION Shockwave therapy and platelet-rich plasma demonstrated statistically significant improvements, though the clinical relevance and extent of their impact remain questionable. Further research is necessary to determine the efficacy of stem cell therapies for erectile function.
Collapse
Affiliation(s)
| | - Gal Saffati
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Daniela Orozco Rendon
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Troy La
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Shane Kronstedt
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Akhil Muthigi
- Department of Urology, Houston Methodist, Houston, TX, 77030, United States
| | - Mohit Khera
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030, United States
| |
Collapse
|
2
|
Zhai J, Chen Z, Chen P, Yang W, Wei H. Adipose Derived Mesenchymal Stem Cells-Derived Mitochondria Transplantation Ameliorated Erectile Dysfunction Induced by Cavernous Nerve Injury. World J Mens Health 2024; 42:188-201. [PMID: 37382278 PMCID: PMC10782119 DOI: 10.5534/wjmh.220233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/11/2023] [Accepted: 03/01/2023] [Indexed: 06/30/2023] Open
Abstract
PURPOSE Erectile dysfunction (ED) is a common postoperative complication of pelvic surgery for which there is currently no effective treatment. This study investigated the therapeutic effects and potential mechanisms of adipose derived mesenchymal stem cells-derived mitochondria (ADSCs-mito) transplantation in a rat model of bilateral cavernous nerve injury (CNI) ED. MATERIALS AND METHODS We isolated mitochondria from ADSCs and tested their quality. In vivo, twenty male Sprague Dawley rats were randomly divided into four groups: sham operation group and CNI groups that received intracavernous injection of either phosphate buffer solution, ADSCs-mito or ADSCs. Two weeks after therapy, the erectile function of the rats was evaluated and the penile tissues were harvested for histologic analysis and western blotting. In vitro, the apoptosis rate, reactive oxygen species (ROS), mitochondria derived active oxygen (mtROS) and adenosine triphosphate (ATP) levels were detected in corpus cavernosum smooth muscle cells (CCSMCs) after the incubation with ADSCs-mito. In addition, intercellular mitochondrial transfer was visualized by co-culture of ADSCs and CCSMCs. RESULTS The ADSCs, ADSCs-mito and CCSMCs were isolated and identified successfully. ADSCs-mito transplantation notably restored the erectile function and smooth muscle content of CNI ED rats. Moreover, the levels of ROS, mtROS and cleaved-caspase 3 were reduced and the levels of superoxide dismutase and ATP were increased after ADSCs-mito transplantation. In CNI ED rats, the mitochondrial structure of cells in penile tissues was destroyed. ADSCs could transfer its own mitochondria to CCSMCs. Pre-treatment with ADSCs-mito could significantly decrease apoptosis rate, ROS levels and mtROS levels as well as restore the ATP level in CCSMCs. CONCLUSIONS ADSCs-mito transplantation significantly ameliorated ED induced by CNI, with similar potency to ADSCs treatment. The ADSCs-mito might exert their effects via anti-oxidative stress, anti-apoptosis and modulating energy metabolism of CCSMCs. Mitochondrial transplantation should be a promising therapeutic method for treating CNI ED in the future.
Collapse
Affiliation(s)
- Jiancheng Zhai
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peng Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wende Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Furtado TP, Saffati G, Furtado MH, Khera M. Stem cell therapy for erectile dysfunction: a systematic review. Sex Med Rev 2023; 12:87-93. [PMID: 37758225 DOI: 10.1093/sxmrev/qead040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) is a common condition that negatively affects men's quality of life. It can have various causes, including psychological, vascular, and neurologic factors. Existing treatments for ED mainly focus on symptom relief rather than addressing the underlying cause. Stem cells (SCs) have shown potential as a therapeutic approach for ED due to their anti-inflammatory properties. OBJECTIVES This systematic review aims to assess the current status of trials and determine the potential impact of SCs on male sexual health. METHODS A comprehensive search strategy was employed to gather relevant articles from 6 electronic databases. The search included articles published until March 2023. The reference lists of articles were manually reviewed to identify additional studies of relevance. The eligibility criteria for inclusion in the analysis focused on clinical trials involving humans that evaluated the safety and efficacy of SC therapy for ED. Exclusion criteria encompassed case reports, case series, abstracts, reviews, and editorials, as well as studies involving animals or SC derivatives. Data extraction was performed via a standardized form with a focus on erectile outcomes. RESULTS A total of 2847 articles were initially identified; 18 were included in the final analysis. These studies involved 373 patients with ED and various underlying medical conditions. Multiple types of SC were utilized in the treatment of ED: mesenchymal SCs, placental matrix-derived mesenchymal SCs, mesenchymal SC-derived exosomes, adipose-derived SCs, bone marrow-derived mononuclear SCs, and umbilical cord blood SCs. CONCLUSION SC therapy shows promise as an innovative and safe treatment for organic ED. However, the lack of standardized techniques and controlled groups in many studies hampers the ability to evaluate and compare trials.
Collapse
Affiliation(s)
- Thiago P Furtado
- Faculdade de Ciencias Medicas de Minas Gerais, Belo Horizonte, 30130-110, Brazil
| | - Gal Saffati
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, United States
| | | | - Mohit Khera
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
4
|
Pérez-Aizpurua X, Garranzo-Ibarrola M, Simón-Rodríguez C, García-Cardoso JV, Chávez-Roa C, López-Martín L, Tufet i Jaumot JJ, Alonso-Román J, Maqueda-Arellano J, Gómez-Jordana B, Ruiz de Castroviejo-Blanco J, Osorio-Ospina F, González-Enguita C, García-Arranz M. Stem Cell Therapy for Erectile Dysfunction: A Step towards a Future Treatment. Life (Basel) 2023; 13:life13020502. [PMID: 36836859 PMCID: PMC9963846 DOI: 10.3390/life13020502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Background: The improvement of absent or partial response in the medical treatment of erectile dysfunction (ED) has led to the development of minimally invasive new treatment modalities in the field of regenerative medicine. Methods: A literature review on stem cell therapy for the treatment of ED was performed. We searched for the terms "erectile dysfunction" and "stem cell therapy" in PubMed and Clinicaltrials.gov. Literature searching was conducted in English and included articles from 2010 to 2022. Results: New treatment modalities for ED involving stem cell therapy are not only conceived with a curative intent but also aim to avoid unnecessary adverse effects. Several sources of stem cells have been described, each with unique characteristics and potential applications, and different delivery methods have been explored. A limited number of interventional studies over the past recent years have provided evidence of a safety profile in their use and promising results for the treatment of ED, although there are not enough studies to generate an appropriate protocol, dose or cell lineage, or to determine a mechanism of action. Conclusions: Stem cell therapy is a novel treatment for ED with potential future applications. However, most urological societies agree that further research is required to conclusively prove its potential benefit.
Collapse
Affiliation(s)
- Xabier Pérez-Aizpurua
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Correspondence:
| | | | | | | | - César Chávez-Roa
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Leticia López-Martín
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Josué Alonso-Román
- Urology Department, Hospital Universitario Virgen de la Macarena, 41009 Sevilla, Spain
| | | | - Blanca Gómez-Jordana
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Felipe Osorio-Ospina
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Mariano García-Arranz
- Instituto de Investigación Sanitaria (IIS-FJD), Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| |
Collapse
|
5
|
Zhang Z, Nie P, Yang W, Ma X, Chen Z, Wei H. Lipopolysaccharide-preconditioned allogeneic adipose-derived stem cells improve erectile function in a rat model of bilateral cavernous nerve injury. Basic Clin Androl 2022; 32:5. [PMID: 35337262 PMCID: PMC8953072 DOI: 10.1186/s12610-022-00156-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/26/2022] [Indexed: 01/15/2023] Open
Abstract
Background Erectile dysfunction (ED) often occurs due to cavernous nerve injury (CNI) after colorectal surgery. Cell-based therapies have great potential for the treatment of CNI-related ED; however, it needs to be optimised. In this study, we explored the therapeutic effects of lipopolysaccharide-preconditioned allogeneic adipose-derived stem cells (L-ADSCs) on CNI-induced ED in rats. Results The results of this in vitro study revealed that low-dose lipopolysaccharide could increase the viability of ADSCs, inhibit caspase 3 activation induced by hydrogen peroxide and promote cell migration. Compared with the ADSC supernatant, the L-ADSC supernatant could better reduce fibrosis in the corpus cavernosum smooth muscle cells induced by transforming growth factor-beta 1 protein. In the in vivo study, it was compared to ADSCs therapy, where the L-ADSCs therapy indicated that could better improve erectile function by increasing smooth muscle content and alleviating penile fibrosis in rats 2 weeks after CNI. The outcome may be related to the increase in the hepatocyte growth factor content in the corpus cavernosum and myelin basic protein in the major pelvic ganglion. Conclusions L-ADSC treatment may be a promising approach for restoring erectile function after CNI. Supplementary Information The online version contains supplementary material available at 10.1186/s12610-022-00156-w.
Collapse
Affiliation(s)
- Zhenbin Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Pan Nie
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Wende Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Xiaolei Ma
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
| |
Collapse
|
6
|
Erectile Dysfunction Treatment Using Stem Cells: A Review. MEDICINES 2021; 8:medicines8010002. [PMID: 33419152 PMCID: PMC7825548 DOI: 10.3390/medicines8010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022]
Abstract
Erectile dysfunction (ED) is a disorder that affects the quality of life and the sexual relations of more than half of the male population aged over 40 years. The prediction regarding the incidence of ED is devastating as it is expected that this disorder will affect more than 300 million men in the next five years. Several studies have suggested the use of stem cells for the treatment of ED and showed that this type of treatment is promising in terms of damaged tissue repair as well as of clinical efficacy; however, there are several gaps in the knowledge and evidence is lacking. In order to highlight a few of them in this review, we performed a research of the literature focusing on currently available clinical studies regarding the clinical efficacy of stem cell administration for the treatment of ED. We reviewed the methods of administration, the cell types used in the performed clinical trials and the safety and efficiency of such procedures. We conclude that there are rapidly expanding and promising results from the reported clinical studies indicating that stem cells could indeed be a potential treatment for patients with ED although more studies are necessary.
Collapse
|
7
|
Song J, Sun T, Tang Z, Ruan Y, Liu K, Rao K, Lan R, Wang S, Wang T, Liu J. Exosomes derived from smooth muscle cells ameliorate diabetes-induced erectile dysfunction by inhibiting fibrosis and modulating the NO/cGMP pathway. J Cell Mol Med 2020; 24:13289-13302. [PMID: 33009701 PMCID: PMC7701535 DOI: 10.1111/jcmm.15946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/06/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022] Open
Abstract
Erectile dysfunction (ED) is a major health issue among men with diabetes, and ED induced by diabetes mellitus (DMED) is particularly difficult to treat. Therefore, novel therapeutic approaches for the treatment of DMED are urgently needed. Exosomes, nanosized particles involved in many physiological and pathological processes, may become a promising tool for DMED treatment. In this study, we investigated the therapeutic effect of exosomes derived from corpus cavernosum smooth muscle cells (CCSMC‐EXOs) on erectile function in a rat model of diabetes and compared their effect with that of exosomes derived from mesenchymal stem cells (MSC‐EXOs). We incubated labelled CCSMC‐EXOs and MSC‐EXOs with CCSMCs and then observed uptake of the exosomes at different time points using laser confocal microscopy. CCSMC‐EXOs were more easily taken up by CCSMCs. The peak concentration and retention time of labelled CCSMC‐EXOs and MSC‐EXOs in the corpus cavernosum of DMED rats after intracavernous injection were compared by in vivo imaging techniques. Intracavernous injection of CCSMC‐EXOs was associated with a relatively high peak concentration and long retention time. Our data showed that CCSMC‐EXOs could improve erectile function in DMED rats. Meanwhile, CCSMC‐EXOs could exert antifibrotic effects by increasing the smooth muscle content and reducing collagen deposition. CCSMC‐EXOs also increased the expression of eNOS and nNOS, followed by increased levels of NO and cGMP. These findings initially identify the possible role of CCSMC‐EXOs in ameliorating DMED through inhibiting corporal fibrosis and modulating the NO/cGMP signalling pathway, providing a theoretical basis for a breakthrough in the treatment of DMED.
Collapse
Affiliation(s)
- Jingyu Song
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Taotao Sun
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Zhe Tang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yajun Ruan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Kang Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Ke Rao
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Ruzhu Lan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Shaogang Wang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Tao Wang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Jihong Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
8
|
Matz EL, Thakker PU, Gu X, Terlecki RP, Dou L, Walker SJ, Lue T, Lin G, Atala A, Yoo JJ, Zhang Y, Jackson JD. Administration of secretome from human placental stem cell-conditioned media improves recovery of erectile function in the pelvic neurovascular injury model. J Tissue Eng Regen Med 2020; 14:1394-1402. [PMID: 32652851 DOI: 10.1002/term.3105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023]
Abstract
Human placental stem cells (PSCs) enhance histological and functional recovery in a rodent erectile dysfunction (ED) model. We tested the hypothesis that bioactive factors secreted by PSC (i.e., the secretome) mediate functional recovery and that acellular-conditioned media (CM) from PSC culture (PSC-CM) could be used independently to facilitate functional and histological recovery. To identify factors relative to efficacy of PSC, a comparison of CM from PSC and three additional human stem cell populations was performed. CM from human PSC, amniotic fluid stem cells (AFSCs), adipose-derived stem cells (ADSC), and human umbilical vein endothelial cells (HUVECs) was assayed using a semi-quantitative human cytokine antibody array. Male rats, after surgically created ED by neurovascular injury, were randomly divided into four groups: vehicle control (phosphate-buffered saline [PBS]), PSC, PSC-CM, and serum-free media control (SFM) as control. Functional data on intracorporal and mean arterial pressure were obtained, and histological architecture was examined 6 weeks after single injection. PSCs were found to secrete at least 27 cytokines and growth factors at a significantly higher level than the other three cell types. Either single injection of PSC-CM or PSC significantly improved erectile functional recovery and histological architecture compared with SFM or PBS. Injection of the secretome isolated from human PSC improves erectile functional recovery and histological structure in a rat model of neurovascular injury-induced ED. Further characterization of the unique protein expression within the PSC-CM may help to identify the potential for a novel injectable cell-free therapeutic for applicable patients.
Collapse
Affiliation(s)
- Ethan L Matz
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.,Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Parth U Thakker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.,Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Xin Gu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ryan P Terlecki
- Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Lei Dou
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.,Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Tom Lue
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Guiting Lin
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.,Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - John D Jackson
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| |
Collapse
|
9
|
Liu MC, Chang ML, Wang YC, Chen WH, Wu CC, Yeh SD. Revisiting the Regenerative Therapeutic Advances Towards Erectile Dysfunction. Cells 2020; 9:E1250. [PMID: 32438565 PMCID: PMC7290763 DOI: 10.3390/cells9051250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Erectile dysfunction (ED) is an inability to attain or maintain adequate penile erection for successful vaginal intercourse, leading to sexual and relationship dissatisfaction. To combat ED, various surgical and non-surgical approaches have been developed in the past to restore erectile functions. These therapeutic interventions exhibit significant impact in providing relief to patients; however, due to their associated adverse effects and lack of long-term efficacy, newer modalities such as regenerative therapeutics have gained attention due to their safe and prolonged efficacy. Stem cells and platelet-derived biomaterials contained in platelet-rich plasma (PRP) are thriving as some of the major therapeutic regenerative agents. In recent years, various preclinical and clinical studies have evaluated the individual, as well as combined of stem cells and PRP to restore erectile function. Being rich in growth factors, chemokines, and angiogenic factors, both stem cells and PRP play a crucial role in regenerating nerve cells, myelination of axons, homing and migration of progenitor cells, and anti-fibrosis and anti-apoptosis of damaged cavernous nerve in corporal tissues. Further, platelet-derived biomaterials have been proven to be a biological supplement for enhancing the proliferative and differentiation potential of stem cells towards neurogenic fate. Therefore, this article comprehensively analyzes the progresses of these regenerative therapies for ED.
Collapse
Affiliation(s)
- Ming-Che Liu
- Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (M.-C.L.); (C.-C.W.)
- Clinical Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, school of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Meng-Lin Chang
- Department of Urology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242, Taiwan;
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Ya-Chun Wang
- TCM Biotech International Corp., New Taipei City 22175, Taiwan; (Y.-C.W.); (W.-H.C.)
| | - Wei-Hung Chen
- TCM Biotech International Corp., New Taipei City 22175, Taiwan; (Y.-C.W.); (W.-H.C.)
| | - Chien-Chih Wu
- Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (M.-C.L.); (C.-C.W.)
- Department of Education and Humanities in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shauh-Der Yeh
- Department of Urology and Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
10
|
Yang W, Chen Z, Ma X, Ouyang X, Fang J, Wei H. Co-overexpression of VEGF and GDNF in adipose-derived stem cells optimizes therapeutic effect in neurogenic erectile dysfunction model. Cell Prolif 2020; 53:e12756. [PMID: 31943490 PMCID: PMC7046481 DOI: 10.1111/cpr.12756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives To evaluate the rapid repair potential of adipose‐derived stem cells (ADSCs) co‐overexpressing VEGF and GDNF on bilateral cavernous nerve injury (BCNI) in rat models. Progressive fibrosis of the penis that occurs shortly after BCNI is a key cause of clinical treatment difficulty of erectile dysfunction (ED). Traditional medications are ineffective for ED caused by BCNI. ADSCs have shown therapeutic effects in animal models, but disappointing in clinical treatment suggests that we should explore optimal treatment of it. Materials and methods We extracted ADSCs from rat epididymis. Lentiviral transfection was verified by western blot and immunofluorescence. Thirty‐six SD rats (10 weeks old) were randomly divided into six groups (n = 6 per group): sham surgery, and remaining five BCNI groups transplanted PBS or ADSCs which were genetically modified by vehicle, VEGF (ADSC‐V), GDNF (ADSC‐G), or VEGF&GDNF (ADSC‐G&V) around major pelvic ganglion (MPG). We investigated the therapeutic effects of BCNI rat model which is characterized by ED, penile tissue fibrosis and hypoxia, and lack of nitrogen nerves or vascular atrophy. Results Erectile function was almost recovered after 2 weeks of transplantation of ADSC‐G&V, promoted cavernous nerve repair, prevented penile fibrosis and preserving the vascular endothelium, which was significant differences amongst ADSC‐V or ADSC‐G. Moreover, GM‐ADSCs were detected in MPG and penis, indicating that their participation in repair of target organs and transverse nerves. Conclusions These promising data indicate that ADSCs co‐overexpressed VEGF and GDNF‐induced synergistic effects, make it a potential tool for recovering of erectile function speedily after BCNI.
Collapse
Affiliation(s)
- Wende Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaolei Ma
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafeng Fang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Fang J, Huang X, Han X, Zheng Z, Hu C, Chen T, Yang X, Ouyang X, Chen Z, Wei H. Endothelial progenitor cells promote viability and nerve regenerative ability of mesenchymal stem cells through PDGF-BB/PDGFR-β signaling. Aging (Albany NY) 2020; 12:106-121. [PMID: 31899688 PMCID: PMC6977666 DOI: 10.18632/aging.102604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/05/2019] [Indexed: 01/06/2023]
Abstract
Denervation-induced erectile dysfunction (ED) is a prevailing health problem. Our previous study revealed that endothelial progenitor cells (EPCs) promoted the effect of mesenchymal stem cells (MSCs) on restoration of denervation-induced ED in rats. However, underling mechanisms are still largely elusive. In this study, EPCs and MSCs were co-cultured and resorted to co-EPCs and co-MSCs. EPCs-derived paracrine factors containing PDGF-BB (platelet-derived growth factor) were detected, and MSCs were pre-treated with PDGF-BB, while co-MSCs were pre-treated with PDGFR inhibitor AG1296. Either viability or nerve regenerative ability of MSCs was evaluated. In addition, inhibition of either PI3K/Akt or MEK/Erk pathway was performed to evaluate the role of PI3K/Akt and MEK/Erk pathway in PDGF-BB-induced viability of MSCs. The results revealed that PDGF-BB significantly increased the proportion of PDGFR-β+ MSCs, and promoted both in-vitro and in-vivo viability, as well as nerve regenerative capacity and erectile function restoration of MSCs in rats. Inhibition of PI3K/Akt, MEK/Erk pathway or mTOR led to decrease of PDGF-BB/PDGFR-β induced viability of MSCs. To our knowledge, our study first demonstrates that EPCs promote viability and potential nerve regenerative ability of MSCs through PDGF-BB/PDGFR-β signaling and its downstream PI3K/Akt and MEK/Erk pathways. mTOR acts as a co-mediator in PI3K/Akt and MEK/Erk pathways.
Collapse
Affiliation(s)
- Jiafeng Fang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xuna Huang
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaoyan Han
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zongheng Zheng
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Cheng Hu
- Department of Urinary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tufeng Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaofeng Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
12
|
Chen S, Zhu J, Wang M, Huang Y, Qiu Z, Li J, Chen X, Chen H, Xu M, Liu J, She M, Li H, Yang X, Wang Y, Cai X. Comparison of the therapeutic effects of adipose‑derived and bone marrow mesenchymal stem cells on erectile dysfunction in diabetic rats. Int J Mol Med 2019; 44:1006-1014. [PMID: 31257465 PMCID: PMC6658012 DOI: 10.3892/ijmm.2019.4254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to compare the effects of adipose‑derived mesenchymal stem cell (ADSC) and bone marrow mesenchymal stem cell (BMSC) transplantation into the corpora cavernosa of diabetic rats with erectile function. ADSCs and BMSCs were isolated and identified by flow cytometry. Rats with streptozocin‑induced diabetes were screened using apomorphine to obtain a rat model of diabetic erectile dysfunction, followed by transplantation of ADSCs and BMSCs into the corpora cavernosa. Two weeks later, the rats were again injected with apomorphine, the intracavernous pressure (ICP) and mean arterial pressure (MAP) of the penile tissue were measured, and the corpus cavernosum tissues were harvested. Angiogenic endothelial nitric oxide synthase (eNOS) expression was detected by western blotting and immunofluorescence analysis. The blood vessels in the corpus cavernosum were observed following hematoxylin and eosin (H&E) staining, and the expression of collagen was detected by Sirius Red staining. The cellular ultrastructure was examined by transmission electron microscopy. Intracavernous injection of ADSCs significantly increased ICP and ICP/MAP. Western blotting and immunofluorescence results revealed that ADSC treatment improved the expression of eNOS in the penile tissue of diabetic rats. The H&E staining results demonstrated that ADSC treatment promoted revascularization of the corpus cavernosum, and the results of Sirius Red staining revealed that ADSC treatment reduced penile collagen in diabetic rats. Transmission electron microscopy examination revealed that the ultrastructure of the tissues in the ADSC‑treated group was more complete compared with that in the untreated diabetic model group. In conclusion, ADSCs were found to be more effective compared with BMSCs in treating diabetes‑related erectile dysfunction.
Collapse
Affiliation(s)
- Sansan Chen
- Department of Urology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Jianbin Zhu
- Technology Center, Guangdong Vitalife Bio-Tech Co., Ltd., Foshan, Guangdong 528200
| | - Mingzhu Wang
- Reproductive Center of Obstetrics and Gynecology, Southern Medical University, Guangzhou, Guangdong 510515
| | - Yanting Huang
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
| | - Zhuolin Qiu
- Reproductive Center of Obstetrics and Gynecology, Southern Medical University, Guangzhou, Guangdong 510515
| | - Jingjing Li
- Technology Center, Guangdong Vitalife Bio-Tech Co., Ltd., Foshan, Guangdong 528200
| | - Xinglu Chen
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
| | - Huiying Chen
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Mingyu Xu
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Jun Liu
- Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong 510091
| | - Miaoqin She
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510660
| | - Hongwei Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Xiaorong Yang
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
- Correspondence to: Dr Xiangsheng Cai or Dr Xiaorong Yang, Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, 39 Nonglin Xia Road, Guangzhou, Guangdong 510080, P.R. China, E-mail: , E-mail:
| | - Yi Wang
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiangsheng Cai
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
- Correspondence to: Dr Xiangsheng Cai or Dr Xiaorong Yang, Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, 39 Nonglin Xia Road, Guangzhou, Guangdong 510080, P.R. China, E-mail: , E-mail:
| |
Collapse
|
13
|
Chen Z, Han X, Ouyang X, Fang J, Huang X, Wei H. Transplantation of induced pluripotent stem cell-derived mesenchymal stem cells improved erectile dysfunction induced by cavernous nerve injury. Am J Cancer Res 2019; 9:6354-6368. [PMID: 31588222 PMCID: PMC6771238 DOI: 10.7150/thno.34008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022] Open
Abstract
Erectile dysfunction (ED) is an important kind of postoperative complication of pelvic surgery that affects patients' quality of life. Transplantation of mesenchymal stem cells (MSC) has been found to alleviate ED caused by cavernous nerve injury (CNI) in rats. However, little is known about whether induced pluripotent stem cell-derived mesenchymal stem cells (iMSC) have a therapeutic effect on CNI ED. We established an ED model on rats and evaluated the effect of iMSC on it. Methods: Eight-week-old male Sprague-Dawley rats were assigned to four groups and received following operation: sham operation (sham group); bilateral CNI and phosphate-buffered saline (PBS) injections (PBS group); bilateral CNI and adipose-derived mesenchymal stem cells transplantation (adMSC group); or bilateral CNI and iMSC injection (iMSC group). After therapy, the cavernous nerve was stimulated by electricity and the intracavernous pressure (IAP)/mean arterial blood pressure (MAP) was measured. The endothelial and smooth muscle tissue in the penis was assessed histologically with Masson's trichrome stain. Immunofluorescence/immunohistochemical stains were applied for the detection of nNOS, vWF, eNOS, SMA, Desmin, S100β, and caspase-3. Nude rats CNI ED model was established for the evaluation of iMSC longevity and differentiation capacity. The paracrine factors were assessed by real-time PCR. Results: Transplantation of iMSC significantly restored the IAP/MAP in this CNI ED model and showed long-term effects. It could rescue the expression of vWF, eNOS, SMA, and Desmin, which indicated the alleviation of endothelial and smooth muscle tissues of the penis. iMSC therapy also could increase the expression of nNOS in the cavernosum and S100β in the major pelvic ganglia (MPG) which contributed to the erectile function. Moreover, the level of BAX and caspase-3 were reduced and Bcl-2 was increased, which indicated the anti-apoptosis effects of iMSC. The iMSC showed little transdifferentiation and exerted their function by activating the secretome of the host. Conclusion: Transplantation of iMSC significantly improved ED induced by CNI. The iMSC may exert their effects via paracrine factors and may be a promising therapeutic candidate for treating CNI ED in the future.
Collapse
|
14
|
Gu X, Shi H, Matz E, Zhong L, Long T, Clouse C, Li W, Chen D, Chung H, Murphy S, Yoo J, Lin G, Lue T, Atala A, Jackson J, Zhang Y. Long‐term therapeutic effect of cell therapy on improvement in erectile function in a rat model with pelvic neurovascular injury. BJU Int 2019; 124:145-154. [DOI: 10.1111/bju.14631] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xin Gu
- Department of Urology Shanghai Ninth People's Hospital Shanghai JiaoTong University School of Medicine Shanghai China
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Hua Shi
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Ethan Matz
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Liren Zhong
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Ting Long
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Cara Clouse
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Wei Li
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Dong Chen
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - HyunChul Chung
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Sean Murphy
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - James Yoo
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Guiting Lin
- Department of Urology University of California San Francisco San Francisco CA USA
| | - Tom Lue
- Department of Urology University of California San Francisco San Francisco CA USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - John Jackson
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| |
Collapse
|
15
|
Milenkovic U, Albersen M, Castiglione F. The mechanisms and potential of stem cell therapy for penile fibrosis. Nat Rev Urol 2018; 16:79-97. [DOI: 10.1038/s41585-018-0109-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Ouyang X, Han X, Chen Z, Fang J, Huang X, Wei H. MSC-derived exosomes ameliorate erectile dysfunction by alleviation of corpus cavernosum smooth muscle apoptosis in a rat model of cavernous nerve injury. Stem Cell Res Ther 2018; 9:246. [PMID: 30257719 PMCID: PMC6158845 DOI: 10.1186/s13287-018-1003-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 02/08/2023] Open
Abstract
Background This study investigated the therapeutic effects of MSC-derived exosomes (MSC-Exos) on erectile function in a rat model of cavernous nerve injury (CNI). Methods MSCs were isolated from rat bone marrow and exosomes were isolated from the supernatants by ultracentrifugation. The tissue explant adherent method was used to isolate and culture corpus cavernosum smooth muscle cells (CCSMCs). MSCs and CCSMCs were identified by flow cytometry, in vitro differentiation or immunofluorescence staining. Thirty-two 10-week-old male Sprague Dawley (SD) rats were divided into four groups: a sham operation group and bilateral CNI groups that received intracavernosal (IC) injection of either PBS, MSCs or MSC-Exos. Four weeks after CNI and treatment, the erectile function of the rats was measured by electrically stimulating the cavernous nerve. The penile tissues were harvested for blinded histologic analysis and western blotting. H2O2 was used to induce apoptosis in the CCSMCs, and a flow cytometer was used to measure the cell viability of the CCSMCs treated with or without exosomes in vitro. Results Recovery of erectile function was observed in the MSC-Exos group. The MSC-Exos treatment significantly enhanced smooth muscle content and neuronal nitric oxide synthase in the corpus cavernosum. The ratio of smooth muscle to collagen in the corpus cavernosum was significantly improved in the MSC-Exos treatment group compared to the PBS vehicle group. WB confirmed these biological changes. Cell viability of the CCSMCs was increased in the MSC-Exos-treated groups, and caspase-3 expression was decreased after the MSC-Exos treatment in vivo and in vitro. Conclusions Exosomes isolated from MSCs culture supernatants by ultracentrifugation could ameliorate CNI-induced ED in rats by inhibiting apoptosis in CCSMCs, with similar potency to that observed in the MSCs-treated group. Therefore, this cell-free therapy has great potential for application in the treatment of CNI-induced ED for replacing cell therapy. Graphical abstract MSC-derived exosomes ameliorate erectile dysfunction in a rat model of cavernous nerve injury![]()
Collapse
Affiliation(s)
- Xi Ouyang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Xiaoyan Han
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Jiafeng Fang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Xuna Huang
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China.
| |
Collapse
|
17
|
Vakalopoulos I, Memmos D, Mykoniatis I, Toutziaris C, Dimitriadis G. Stem cell therapy in erectile dysfunction: science fiction or realistic treatment option? Hormones (Athens) 2018; 17:315-320. [PMID: 30132303 DOI: 10.1007/s42000-018-0050-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/22/2018] [Indexed: 01/11/2023]
Abstract
Stem cell therapy has become a subject of great interest to researchers worldwide. One of the medical conditions being studied for possible treatment with the use of stem cells is erectile dysfunction, and particularly organic and post-radical prostatectomy erectile dysfunction. However, is stem cell therapy a viable treatment option for erectile dysfunction? The current body of literature provides a wide array of clinical trials performed on animal models simulating different types of human erectile dysfunction. Unfortunately, only a handful of studies have been performed on human patients and almost all of them were phase 1 studies limited by the small sample size. This review aims to summarize the available evidence on the use of stem cell therapy for the treatment of erectile dysfunction and also to provide an overview of upcoming and ongoing clinical trials in this field.
Collapse
Affiliation(s)
- Ioannis Vakalopoulos
- 1st Department of Urology, Georgios Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Memmos
- 1st Department of Urology, Georgios Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Ioannis Mykoniatis
- 1st Department of Urology, Georgios Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysovalantis Toutziaris
- 1st Department of Urology, Georgios Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Dimitriadis
- 1st Department of Urology, Georgios Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
18
|
Sun X, Luo LH, Feng L, Li DS. Down-regulation of lncRNA MEG3 promotes endothelial differentiation of bone marrow derived mesenchymal stem cells in repairing erectile dysfunction. Life Sci 2018; 208:246-252. [PMID: 30012476 DOI: 10.1016/j.lfs.2018.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 01/05/2023]
Abstract
AIMS In the treatment of diabetes mellitus associated erectile dysfunction (DMED), the intracavernous and periprostatic implantations of bone marrow derived mesenchymal stem cells (BM-MSCs) represent the new therapeutic approaches with great applied prospect. However, the specific mechanisms of BM-MSCs protecting erectile function remain largely unknown. MATERIALS AND METHODS The DMED rats were induced and the erectile function was assessed in the models with or without BM-MSCs implantation using intracavernous pressure (ICP)/mean arterial pressure (MAP) ratio. The differentiation of BM-MSCs toward endothelial cells (ECs) was induced by exogenous vascular endothelial growth factor (VEGF) in vitro. RNA pull-down and RIP assays were performed to explore the interaction between MEG3 and FOXM1 protein. KEY FINDINGS Intracavernous implantation of BM-MSCs effectively improved the erectile function of DMED rats, which was accompanied by a significant decrease in the expression of MEG3 in the corpus cavernosum tissues. Also, our study revealed that MEG3 expression was significantly down-regulated during the endothelial differentiation of BM-MSCs in vitro. The down-regulation of MEG3 was further confirmed to be conducive to the differentiation of BM-MSCs toward ECs. More importantly, MEG3 promoted the degradation of FOXM1 protein via facilitating FOXM1 ubiquitination, thereby decreasing VEGF expression, which ultimately regulated the endothelial differentiation of BM-MSCs. SIGNIFICANCE Taken together, our findings presented the vital role of MEG3 in the repairing processes of BM-MSCs for erectile function and provided new mechanistic insights into the BM-MSCs-mediated DMED repairing.
Collapse
Affiliation(s)
- Xiang Sun
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China.
| | - Long-Hua Luo
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Liang Feng
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Dong-Shui Li
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
19
|
Reed-Maldonado AB, Lue TF. The Current Status of Stem-Cell Therapy in Erectile Dysfunction: A Review. World J Mens Health 2016; 34:155-164. [PMID: 28053944 PMCID: PMC5209555 DOI: 10.5534/wjmh.2016.34.3.155] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/18/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
Stem cells are undifferentiated cells that are capable of renewal and repair of tissue due to their capacity for division and differentiation. The purpose of this review is to describe recent advances in the use of stem cell (SC) therapy for male erectile dysfunction (ED). We performed a MEDLINE database search of all relevant articles regarding the use of SCs for ED. We present a concise summary of the scientific principles behind the usage of SC for ED. We discuss the different types of SCs, delivery methods, current pre-clinical literature, and published clinical trials. Four clinical trials employing SC for ED have been published. These articles are summarized in this review. All four report improvements in ED after SC therapy. SC therapy remains under investigation for the treatment of ED. It is reassuring that clinical trials thus far have reported positive effects on erectile function and few adverse events. Safety and methodical concerns about SC acquisition, preparation and delivery remain and require continued investigation prior to wide-spread application of these methods.
Collapse
Affiliation(s)
| | - Tom F Lue
- Department of Urology, University of California San Francisco, CA, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To summarize recent literature on basic stem cell research in erectile dysfunction in cavernous nerve injury, aging, diabetes, and Peyronie's disease and to provide a perspective on clinical translation of these cellular therapies. RECENT FINDINGS Stem cell research has been concentrated on mesenchymal stem (stromal) cells from bone marrow and adipose tissue. Application of both cell types has produced positive effects on erectile function in various animal models of erectile dysfunction. In acute animal models, such as cavernous nerve injury-induced erectile dysfunction and chemically induced Peyronie's disease, engraftment and differentiation have not been observed, and stem cells are believed to interact with the host tissue in a paracrine fashion, whereas in chronic disease models some evidence suggests both engraftment and paracrine factors may support improved function. Clinical trials are now investigating therapeutic efficacy of cellular therapy, whereas the first safety studies in humans have recently been published. SUMMARY Evidence from preclinical studies has established stem cells as a potential curative treatment for erectile dysfunction and early phase clinical trials are currently performed.
Collapse
|
21
|
Ryu JK, Kim DH, Song KM, Ryu DS, Kim SN, Shin DH, Yi T, Suh JK, Song SU. Intracavernous delivery of clonal mesenchymal stem cells rescues erectile function in the streptozotocin-induced diabetic mouse. Andrology 2015; 4:172-84. [PMID: 26711324 DOI: 10.1111/andr.12138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 09/02/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022]
Abstract
The major hurdle for the clinical application of stem cell therapy is the heterogeneous nature of the isolated cells, which may cause different treatment outcomes. The aim of this study was to examine the effectiveness of mouse clonal bone marrow-derived stem cells (BMSCs) obtained from a single colony by using subfractionation culturing method for erectile function in diabetic animals. Twelve-week-old C57BL/6J mice were divided into four groups: controls, diabetic mice, and diabetic mice treated with a single intracavernous injection of PBS (20 μL) or clonal BMSCs (3 × 10(5) cells/20 μL). Clonal BMSCs were isolated from 5-week-old C3H mice. Two weeks after treatment, erectile function was measured by electrical stimulation of the cavernous nerve. The penis was stained with antibodies to PECAM-1, smooth muscle α-actin, neuronal nitric oxide synthase (nNOS), neurofilament, and phosphorylated endothelial NOS (phospho-eNOS). We also performed Western blot for phospho-eNOS, and eNOS in the corpus cavernosum tissue. Local delivery of clonal BMSCs significantly restored cavernous endothelial and smooth muscle cell contents, and penile nNOS and neurofilament contents, and induced eNOS phosphorylation (Ser1177) in diabetic mice. Intracavernous injection of clonal BMSCs induced significant recovery of erectile function, which reached 80-90% of the control values. Clonal BMSCs successfully restored erectile function through dual angiogenic and neurotrophic effects in diabetic mice. The homogenous nature of clonal mesenchymal stem cells may allow their clinical applications and open a new avenue through which to treat diabetic erectile dysfunction.
Collapse
Affiliation(s)
- J-K Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea.,Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, Korea
| | - D-H Kim
- Translational Research Center, Inha University School of Medicine, Incheon, Korea
| | - K-M Song
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - D-S Ryu
- Department of Urology, Sungkyunkwan University School of Medicine, Samsung Changwon Hospital, Changwon, Korea
| | - S-N Kim
- Drug Development Program, Department of Medicine, Inha University School of Medicine, Incheon, Korea
| | - D-H Shin
- SCM Lifescience Co., Ltd., Incheon, Korea
| | - T Yi
- Translational Research Center, Inha University School of Medicine, Incheon, Korea
| | - J-K Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - S U Song
- Translational Research Center, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
22
|
Alwaal A, Hussein AA, Lin CS, Lue TF. Prospects of stem cell treatment in benign urological diseases. Korean J Urol 2015; 56:257-65. [PMID: 25874038 PMCID: PMC4392024 DOI: 10.4111/kju.2015.56.4.257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/23/2015] [Indexed: 12/15/2022] Open
Abstract
Stem cells (SCs) are undifferentiated cells that are capable of self-renewal and differentiation and that therefore contribute to the renewal and repair of tissues. Their capacity for division, differentiation, and tissue regeneration is highly dependent on the surrounding environment. Several preclinical and clinical studies have utilized SCs in urological disorders. In this article, we review the current status of SC use in benign urological diseases (erectile dysfunction, Peyronie disease, infertility, and urinary incontinence), and we summarize the results of the preclinical and clinical trials that have been conducted.
Collapse
Affiliation(s)
- Amjad Alwaal
- Department of Urology, University of California, San Francisco, CA, USA
- Department of Urology, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Ahmed A. Hussein
- Department of Urology, University of California, San Francisco, CA, USA
- Department of Urology, Cairo University, Cairo, Egypt
| | - Ching-Shwun Lin
- Department of Urology, University of California, San Francisco, CA, USA
| | - Tom F. Lue
- Department of Urology, University of California, San Francisco, CA, USA
| |
Collapse
|
23
|
Stem cell treatment of erectile dysfunction. Adv Drug Deliv Rev 2015; 82-83:137-44. [PMID: 25446142 DOI: 10.1016/j.addr.2014.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/09/2014] [Accepted: 11/08/2014] [Indexed: 12/31/2022]
Abstract
Erectile Dysfunction (ED) is a common disease that typically affects older men. While oral type-5 phosphodieserase inhibitors (PDE5Is) represent a successful first-line therapy, many patients do not respond to this treatment leading researchers to look for alternative treatment modalities. Stem cell (SC) therapy is a promising new frontier for the treatment of those patients and many studies demonstrated its therapeutic effects. In this article, using a Medline database search of all relevant articles, we present a summary of the scientific principles behind SCs and their use for treatment of ED. We discuss specifically the different types of SCs used in ED, the methods of delivery tested, and the methods attempted to enhance SC therapy effect. In addition, we review the current preclinical literature on SC therapy for ED and present a summary of its findings in addition to the single clinical trial published.
Collapse
|
24
|
Suzuki E, Nishimatsu H, Homma Y. Stem cell therapy for erectile dysfunction. World J Clin Urol 2014; 3:272-282. [DOI: 10.5410/wjcu.v3.i3.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/03/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Erectile dysfunction (ED) is an important health problem that has commonly been clinically treated using phosphodiesterase type 5 inhibitors (PDE5Is). However, PDE5Is are less effective when the structure of the cavernous body has been severely injured, and thus regeneration is required. Stem cell therapy has been investigated as a possible means for regenerating the injured cavernous body. Stem cells are classified into embryonic stem cells and adult stem cells (ASCs), and the intracavernous injection of ASCs has been explored as a therapy in animal ED models. Bone marrow-derived mesenchymal stem cells and adipose tissue-derived stem cells are major sources of ASCs used for the treatment of ED, and accumulated evidence now suggests that ASCs are useful in the restoration of erectile function and the regeneration of the cavernous body. However, the mechanisms by which ASCs recover erectile function remain controversial. Some studies indicated that ASCs were differentiated into the vascular endothelial cells, vascular smooth muscle cells, and nerve cells that originally resided in the cavernous body, whereas other studies have suggested that ASCs improved erectile function via the secretion of anti-apoptotic and/or proangiogenic cytokines rather than differentiation into other cell types. In this paper, we reviewed the characteristics of stem cells used for the treatment of ED, and the possible mechanisms by which these cells exert their effects. We also discussed the problems to be solved before implementation in the clinical setting.
Collapse
|