1
|
Ma J, Sun W, Tang L, Yang D. Case Report and Literature Review: Behçet's Disease With a Novel TFPI Gene Mutation. Front Med (Lausanne) 2022; 9:873600. [PMID: 35514752 PMCID: PMC9063658 DOI: 10.3389/fmed.2022.873600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
We report a case of Behçet's disease (BD) with a newly identified tissue factor pathway inhibitor (TFPI) gene mutation. The patient suffered from recurrent deep vein thrombosis and dural sinus thrombosis which could not be relieved by constant anticoagulation therapy. Slight relapsing oral lesion was the initial manifestation of BD but was neglected. Genital ulcers and ocular symptoms were manifest 8-month later than vascular involvement. The patient was diagnosed with BD at last and a novel mutation in TFPI was identified simultaneously. After administration with azathioprine and dexamethasone, the clinical symptoms were quickly gone and no relapse was found during 7-month follow-up.
Collapse
Affiliation(s)
| | | | | | - Di Yang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Trégouët DA, Morange PE. What is currently known about the genetics of venous thromboembolism at the dawn of next generation sequencing technologies. Br J Haematol 2018; 180:335-345. [PMID: 29082522 DOI: 10.1111/bjh.15004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Venous thromboembolism (VTE) has a strong genetic component. This review summarizes what is known at the seventeen genes that are now well established to harbour VTE-associated genetic variants. In addition, it discusses additional candidate genes that deserve further validation before being claimed as VTE associated genes. Finally, several research strategies are briefly described to identify other molecular determinants of the disease.
Collapse
Affiliation(s)
- David-Alexandre Trégouët
- Department of Genomics & Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, UPMC Univ. Paris 06, Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Pierre-Emmanuel Morange
- Laboratory of Haematology, La Timone Hospital, Marseille, France
- INSERM UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, Aix-Marseille University, Marseille, France
| |
Collapse
|
3
|
Dennis J, Medina-Rivera A, Truong V, Antounians L, Zwingerman N, Carrasco G, Strug L, Wells P, Trégouët DA, Morange PE, Wilson MD, Gagnon F. Leveraging cell type specific regulatory regions to detect SNPs associated with tissue factor pathway inhibitor plasma levels. Genet Epidemiol 2017; 41:455-466. [PMID: 28421636 DOI: 10.1002/gepi.22049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 03/07/2017] [Accepted: 03/14/2017] [Indexed: 11/10/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) regulates the formation of intravascular blood clots, which manifest clinically as ischemic heart disease, ischemic stroke, and venous thromboembolism (VTE). TFPI plasma levels are heritable, but the genetics underlying TFPI plasma level variability are poorly understood. Herein we report the first genome-wide association scan (GWAS) of TFPI plasma levels, conducted in 251 individuals from five extended French-Canadian Families ascertained on VTE. To improve discovery, we also applied a hypothesis-driven (HD) GWAS approach that prioritized single nucleotide polymorphisms (SNPs) in (1) hemostasis pathway genes, and (2) vascular endothelial cell (EC) regulatory regions, which are among the highest expressers of TFPI. Our GWAS identified 131 SNPs with suggestive evidence of association (P-value < 5 × 10-8 ), but no SNPs reached the genome-wide threshold for statistical significance. Hemostasis pathway genes were not enriched for TFPI plasma level associated SNPs (global hypothesis test P-value = 0.147), but EC regulatory regions contained more TFPI plasma level associated SNPs than expected by chance (global hypothesis test P-value = 0.046). We therefore stratified our genome-wide SNPs, prioritizing those in EC regulatory regions via stratified false discovery rate (sFDR) control, and reranked the SNPs by q-value. The minimum q-value was 0.27, and the top-ranked SNPs did not show association evidence in the MARTHA replication sample of 1,033 unrelated VTE cases. Although this study did not result in new loci for TFPI, our work lays out a strategy to utilize epigenomic data in prioritization schemes for future GWAS studies.
Collapse
Affiliation(s)
- Jessica Dennis
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Alejandra Medina-Rivera
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, Canada.,Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Vinh Truong
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Lina Antounians
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nora Zwingerman
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Giovana Carrasco
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Lisa Strug
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, Canada.,Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Phil Wells
- Ottawa Hospital Research Institute, Ottawa, Canada
| | - David-Alexandre Trégouët
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM, UMR_S 1166, Paris, France.,ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Pierre-Emmanuel Morange
- INSERM, UMR_S 1062, Marseille, France.,Inra, UMR_INRA 1260, Marseille, France.,Aix Marseille Université, Marseille, France
| | - Michael D Wilson
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
| | - France Gagnon
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|