1
|
Zhang X, Jia Y, Feng R, Wu T, Zhang N, Du Y, Ju H. Cucurbituril Enhanced Electrochemiluminescence of Gold Nanoclusters via Host-Guest Recognition for Sensitive D-Dimer Sensing. Anal Chem 2023; 95:1461-1469. [PMID: 36575586 DOI: 10.1021/acs.analchem.2c04463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gold nanoclusters (AuNCs) are promising electrochemiluminescence (ECL) signal probes for their outstanding biocompatibility, unusual molecule-like structures, and versatile optical and electrochemical properties. Nevertheless, their relatively low ECL efficiency and poor stability in aqueous solutions hindered their application in the ECL sensing field. Herein, a facile host-guest recognition strategy was proposed to enhance the ECL efficiency and stability of Au NCs by rigidifying the surface of ligand-stabilized AuNCs via supramolecular self-assembly between cucurbiturils[7] (CB[7]) and l-phenylalanine (l-Phe). Meanwhile, mercaptopropionic acid (MPA) was introduced as a ligand in order to cooperatively enhance the performance of the AuNCs and facilitate the link between AuNCs and bioactive substances. The prepared CB[7]/l-Phe/MPA-AuNCs had a higher ECL emission efficiency, achieving about 2-fold stronger ECL intensity than that of l-Phe/MPA-AuNCs. In addition, after non-covalent modification with CB[7], the finite stability of the papered AuNCs was significantly improved. The prepared CB[7]/l-Phe/MPA-AuNCs showed excellent D-dimer sensing results, exhibiting a linear range from 50.00 fg/mL to 100.0 ng/mL and a detection limit of 29.20 fg/mL (S/N = 3). Our work demonstrated that the host-guest self-assembly strategy provided a universal approach for strengthening the ECL efficiency and stability of nanostructures on an ultra-small scale.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China
| | - Yue Jia
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China
| | - Rui Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan250022, P.R. China
| | - Tingting Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China
| | - Nuo Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China.,State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing210023, China
| |
Collapse
|