1
|
Pan LH, Lin JH, Li MJ, Cao L, Liu XY, Deng YY, Luo SZ, Zheng Z. Preparation and Characteristics of Ball-Milled Blueberry Peel Particles and Their Application in Ice Cream. Foods 2024; 13:3660. [PMID: 39594076 PMCID: PMC11593373 DOI: 10.3390/foods13223660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Ice cream is popular but contains high amounts of saturated fats and few health-promoting ingredients. In the presence of xanthan gum (0.25%), blueberry peel particles prepared through ball-milling treatment (BMPs) were used to prepare ice cream containing camellia oil as a fat replacer. The BMPs possessed smaller particle sizes, larger contact angles, and higher contents of anthocyanin aglycone compared with commonly milled blueberry peel particles. BMPs with the largest contact angle (66.30°) were obtained by ball-milling the blueberry peel at 15 Hz for 6 h (BMP15Hz6h). The ice cream mixes were depicted as linear viscoelastic gel-like solids, and their apparent viscosity, G' and G', increased with the increase in the BMP15Hz6h concentration. Ice cream with strong antioxidant activity and good freeze-thaw stability was acceptable and desirable in the presence of 0.5% BMP15Hz6h.
Collapse
Affiliation(s)
- Li-Hua Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (L.-H.P.); (J.-H.L.); (M.-J.L.); (X.-Y.L.); (Z.Z.)
| | - Jia-Hui Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (L.-H.P.); (J.-H.L.); (M.-J.L.); (X.-Y.L.); (Z.Z.)
| | - Mei-Jia Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (L.-H.P.); (J.-H.L.); (M.-J.L.); (X.-Y.L.); (Z.Z.)
| | - Lei Cao
- Institute of Agro-Products Processing, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
| | - Xiao-Yu Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (L.-H.P.); (J.-H.L.); (M.-J.L.); (X.-Y.L.); (Z.Z.)
| | - Yuan-Yuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510640, China;
| | - Shui-Zhong Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (L.-H.P.); (J.-H.L.); (M.-J.L.); (X.-Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (L.-H.P.); (J.-H.L.); (M.-J.L.); (X.-Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
2
|
Liu C, Lea Girard A, William Hartel R, Warren Bolling B. Improved analysis of grape seed extract by liquid chromatography-high resolution mass spectrometry (LC-HRMS) reveals that proanthocyanidin-protein interaction mechanisms in cream depend on degree of polymerization. Food Chem 2024; 451:139432. [PMID: 38678655 DOI: 10.1016/j.foodchem.2024.139432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
This study aimed to comprehensively characterize chemical profiles of proanthocyanidins (PACs) from grape seed extract (GSE), examine their interactions with proteins in a cream system, and define the mechanisms mediating PAC-protein interactions. GSE PACs were fractionated and characterized by thiolysis followed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis. New PACs with a degree of polymerization (DP) up to 16 were identified by improved HRMS data processing methods. In the model cream system, high-DP PACs exhibited greater precipitation capacity and protein binding than low-DP PACs. Low-DP PACs primarily engaged in hydrogen bonding, while high-DP PACs predominantly utilized multiple hydrophobic interaction sites to form cream protein aggregates. Furthermore, particle size and viscosity measurement of cream revealed a progressively DP-dependent increase in aggregated fat globules and cream viscosity. These findings enhanced our understanding of PACs' structural intricacies and highlighted their functional role as PAC-rich natural ingredients in creating structured cream systems.
Collapse
Affiliation(s)
- Chang Liu
- Department of Food Science, University of Wisconsin, Madison, 1605 Linden Dr., Madison, WI 53706, USA
| | - Audrey Lea Girard
- Department of Food Science, University of Wisconsin, Madison, 1605 Linden Dr., Madison, WI 53706, USA
| | - Richard William Hartel
- Department of Food Science, University of Wisconsin, Madison, 1605 Linden Dr., Madison, WI 53706, USA
| | - Bradley Warren Bolling
- Department of Food Science, University of Wisconsin, Madison, 1605 Linden Dr., Madison, WI 53706, USA.
| |
Collapse
|
3
|
Cedillos R, Aleman RS, Page R, Olson DW, Boeneke C, Prinyawiwatkul W, Aryana K. Influence of Hesperidin on the Physico-Chemical, Microbiological and Sensory Characteristics of Frozen Yogurt. Foods 2024; 13:808. [PMID: 38472921 DOI: 10.3390/foods13050808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Frozen yogurts contain yogurt culture bacteria, which might impart health benefits to their consumers. Global frozen yogurt market sales are expected to grow by 4.8% by 2028, which represents an important opportunity for the industry, consumers and researchers. Polyphenols are metabolites found in plants which have antioxidant and anti-inflammatory properties and might prevent chronic diseases such as cancer, diabetes and cardiovascular diseases. The objective of this study was to elucidate the effect of the polyphenol hesperidin on the physico-chemical, microbiological and sensory characteristics of frozen yogurts. Hesperidin was incorporated into frozen yogurt at three concentrations (125, 250 and 500 mg/90 g of product), while yogurt with no hesperidin was used as a control. The viscosity and overrun of the frozen yogurt were analyzed on day 0. The hardness, pH, color and Lactobacillus bulgaricus and Streptococcus thermophilus counts were determined after 0, 30 and 60 d. The melting rate was determined at 60 and 90 min after 0, 30 and 60 d. The bile and acid tolerances of both S. thermophilus and L. bulgaricus were measured after 7 and 60 d. A hedonic scale of nine points was used to measure sensory attributes. Data were analyzed at α = 0.05 with an ANOVA with Tukey's adjustment, and McNemar's test was used to analyze purchase intent. Hesperidin did not influence the pH, overrun or microbial characteristics. Polyphenol addition compared to the control decreased the melting rate but increased the hardness and bile tolerance of L. bulgaricus, as well as the L* and b* values. The sensory characteristics were not influenced by the lowest concentration of hesperidin, as it was not statistically different from the control. Moreover, consumers were interested in purchasing frozen yogurt with added hesperidin after learning about the health claim. This study can assist in the development of a healthier frozen yogurt in an increasingly competitive market.
Collapse
Affiliation(s)
- Roberto Cedillos
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Ricardo S Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Ryan Page
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Douglas W Olson
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Charles Boeneke
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Kayanush Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
Tran M, Voronin GL, Roberts RF, Coupland JN, Ziegler GR, Harte FM. The effect of high-pressure jet processing on cocoa stability in chocolate milk. J Dairy Sci 2021; 104:11432-11441. [PMID: 34419273 DOI: 10.3168/jds.2021-20602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
Abstract
Fat-free chocolate milk formulations containing skim milk, cocoa powder, and sugar were thermally treated and then processed using high-pressure jet (HPJ) technology from 125 to 500 MPa. The rheological properties and stability of HPJ-treated chocolate milks were compared with controls (no HPJ processing) prepared both with and without added κ-carrageenan. As expected, carrageenan-free chocolate milk exhibited immediate phase separation of the cocoa powder, whereas formulations containing κ-carrageenan were stable for 14 d. An increased stability was observed with increasing HPJ processing pressure, with a maximum observed when chocolate milk was processed at 500 MPa. The apparent viscosity at 50 s-1 of HPJ-processed samples increased from ~3 mPa·s to ~9 mPa·s with increasing pressure, and shear-thinning behavior (n < 0.9) was observed for samples processed at HPJ pressures ≥250 MPa. We suggest that HPJ-induced structural changes in casein micelles and new casein-cocoa interactions increased cocoa stability in the chocolate milk. Because casein seemed to be the major component enhancing cocoa stability in HPJ-treated samples, a second study was conducted to determine the effect of additional micellar casein (1, 2, or 4%) and HPJ processing (0-500 MPa) on the stability of fat-free chocolate milk. Formulations with 4% micellar casein processed at 375 and 500 MPa showed no phase separation over a 14-d storage period at 4°C. The addition of micellar casein together with HPJ processing at 500 MPa resulted in a higher apparent viscosity (~17 mPa·s at 50s-1) and more pronounced shear-thinning behavior (n ≤ 0.81) compared with that without added micellar casein. The use of HPJ technology to improve the dispersion stability of cocoa provides the industry with a processing alternative to produce clean-label, yet stable, chocolate milk.
Collapse
Affiliation(s)
- M Tran
- Department of Food Science, Pennsylvania State University, University Park 16802
| | - G Lewis Voronin
- Department of Food Science, Pennsylvania State University, University Park 16802
| | - R F Roberts
- Department of Food Science, Pennsylvania State University, University Park 16802
| | - J N Coupland
- Department of Food Science, Pennsylvania State University, University Park 16802
| | - G R Ziegler
- Department of Food Science, Pennsylvania State University, University Park 16802
| | - F M Harte
- Department of Food Science, Pennsylvania State University, University Park 16802.
| |
Collapse
|