1
|
Xie W, Jia R, Qu Y, Ma M, Wang Y, Li H, Sun Q, Li M, Xie F. Response of the distribution and molecular transition of gluten proteins and quality of Chinese steamed bread to different hydration levels. Int J Biol Macromol 2024; 280:135784. [PMID: 39306169 DOI: 10.1016/j.ijbiomac.2024.135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 11/20/2024]
Abstract
This study systematically explored how different hydration levels (45 %, 50 %, and 55 % water addition) affect the evolution of gluten network morphology, distribution, conformational and molecular transition, and moisture migration during the processing of Chinse steamed bread (CSB), and their impact on quality formation. Higher hydration levels resulted in a more uniform distribution and fibrous structure of the gluten network during mixing. However, excessive hydration (55 %) caused gluten fibers to rupture during fermentation. This increased the specific volume but decreased the chewiness and stickiness of CSB. MRI results highlighted that differences in moisture migration and internal structure among samples with different hydration levels were enlarged after steaming. AFM images revealed the increase in both protein molecular chain height and width with increasing hydration level, particularly after steaming. Moreover, high hydration levels promoted the depolymerization of glutenin macropolymers during mixing, fermentation, as well as repolymerization during cooking. These results indicated that both macroscopic qualities and molecular structure of gluten protein became more sensitive to the physical and biochemical processes during CSB processing. These dynamic transitions play a crucial role in determining dough rheological properties and CSB's overall quality. This research offers theoretical insights for precise dough product regulation and understanding underlying mechanisms.
Collapse
Affiliation(s)
- Wenxin Xie
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Ruobing Jia
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yunpeng Qu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Meng Ma
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Yanfei Wang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Hongyan Li
- Heze Huarui Wheat flour Industry Co. LTD, Heze, 274000, Shandong, China
| | - Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Man Li
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
2
|
Yang Q, Guo J, Zhang F, Zhao F, Zhang G. Inulin with different degrees of polymerization as a functional ingredient: Evaluation of flour, dough, and steamed bread characteristics during freezing. Food Chem X 2024; 22:101431. [PMID: 38764781 PMCID: PMC11101675 DOI: 10.1016/j.fochx.2024.101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
In the study, the effects of short-chain inulin (OP), natural inulin (OH), and long-chain inulin (OHP) at substitution levels of 3%, 6%, and 9%, as well as freezing of 0, 15, and 30 days, on the farinograph and extensograph characteristics of flour, the rheological properties, water distribution, and microstructure of dough, as well as the quality of the final steamed bread, were investigated. The findings revealed that inulin led to a reduction in the water absorption of the dough while increasing its stable time. Furthermore, inulin delayed the alteration of freezable water within the frozen dough. Notably, the addition of inulin resulted in a more cohesive and evenly arranged network structure within the frozen dough. Steamed bread supplemented with 6% OP, 6% OH, and 3% OHP consistently dislayed a higher specific volume and spread ratio. These findings offer valuable insights into the utilization of inulin in frozen wheat foods.
Collapse
Affiliation(s)
- Qing Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| | - Fan Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| | - Fen Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| | - Gege Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| |
Collapse
|
3
|
Qi Y, Cheng J, Chen Y, Xu B. Effect of sodium carbonate on the properties of seventy percent of Tartary buckwheat composite flour-based doughs and noodles and the underlying mechanism. J Texture Stud 2023; 54:947-957. [PMID: 37661756 DOI: 10.1111/jtxs.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
The impact of Na2 CO3 on the properties of doughs and noodles containing 70% Tartary buckwheat flour was investigated. Low-field 1 H nuclear magnetic resonance showed the mobility of water in the doughs significantly declined with the addition content of alkali from 0% to 0.9%. Na2 CO3 promoted the transformation from free sulfhydryl groups to disulfide bonds in doughs because the sulfhydryl groups in cysteine preferred to form thiolate anion and then oxidate under alkaline conditions. As for non-covalent chemical interactions, a significant increase of hydrogen bonds and a decrease of hydrophobic interactions were observed after Na2 CO3 addition. Quantitative analysis of microstructure showed that more uniform and denser gluten networks with higher branching rate and shorter average protein length and width formed in the doughs with 0.3%-0.6% of Na2 CO3 . The aggregated glutenin macropolymer and enhanced protein structure led to significantly stronger tensile of Tartary buckwheat dough sheets, which could meet the demand of continuous processing in the factory. Dough with alkali had higher swelling power and pasting viscosities, contributing to higher water absorption, and improved textural attributes of cooked noodles. This study demonstrated the possibility of adding Na2 CO3 at a moderate level for promoting the sheeting, cooking, and eating properties of high Tartary buckwheat flour composite noodles.
Collapse
Affiliation(s)
- Yajing Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiahao Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yu Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
An D, Li H, Li D, Zhang D, Huang Y, Obadi M, Xu B. The relation between wheat starch properties and noodle springiness: From the view of microstructure quantitative analysis of gluten-based network. Food Chem 2022; 393:133396. [DOI: 10.1016/j.foodchem.2022.133396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 11/04/2022]
|
5
|
Feng Y, Feng X, Liu S, Zhang H, Wang J. Effects of dietary fiber and ferulic acid on dough characteristics and glutenin macropolymer (GMP) aggregation behavior during dough resting. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Obadi M, Zhang J, Xu B. The role of inorganic salts in dough properties and noodle quality—A review. Food Res Int 2022; 157:111278. [DOI: 10.1016/j.foodres.2022.111278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
|
7
|
Obadi M, Zhang J, He Z, Zhu S, Wu Q, Qi Y, Xu B. A review of recent advances and techniques in the noodle mixing process. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Puligundla P, Lim S. Buckwheat noodles: processing and quality enhancement. Food Sci Biotechnol 2021; 30:1471-1480. [PMID: 34868697 PMCID: PMC8595341 DOI: 10.1007/s10068-021-00960-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 12/01/2022] Open
Abstract
In recent years, buckwheat noodles have gained increased importance because of their functional properties. These qualities are attributed to the abundance of bioactive compounds (e.g., rutin, quercetin) and nutraceuticals (e.g., B vitamins, unsaturated fatty acids). Buckwheat noodle consumption has been shown to be associated with improved metabolic health. Buckwheat flour exhibits properties similar to those of common cereal flours in food processing, but devoid of gluten. However, the maintenance of good textural properties and high sensory acceptability are key challenges in the development of gluten-free products, and these limitations prevented widespread application of buckwheat in the food industry. Nevertheless, continuous technological developments related to raw materials processing, noodle processing, and noodle quality enhancement have contributed to the growing popularity and acceptability of buckwheat noodles in recent times. These improvements could render buckwheat noodles a healthy gluten-free alternative to wheat noodles.
Collapse
Affiliation(s)
- Pradeep Puligundla
- Department of Food Science and Biotechnology, Gachon University, 1342 Seongnam‐daero, Sujeong‐gu, Seongnam-si, Gyeonggi-do 13120 Republic of Korea
| | - Seokwon Lim
- Department of Food Science and Biotechnology, Gachon University, 1342 Seongnam‐daero, Sujeong‐gu, Seongnam-si, Gyeonggi-do 13120 Republic of Korea
| |
Collapse
|
9
|
Chen Z, Huang Q, Xia Q, Zha B, Sun J, Xu B, Shi YC. Intact endosperm cells in buckwheat flour limit starch gelatinization and digestibility in vitro. Food Chem 2020; 330:127318. [DOI: 10.1016/j.foodchem.2020.127318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
|
10
|
Liao M, Qi Y, Liu S, Obadi M, Xu B. Sandwich-type sheeting improved the processing and eating qualities of potato noodles. J Texture Stud 2020; 52:81-90. [PMID: 32984954 DOI: 10.1111/jtxs.12561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 09/02/2020] [Indexed: 11/29/2022]
Abstract
A technology called sandwich-type sheeting was used to produce noodles with potato flakes. The technical parameters of sheeting were first optimized. Then the processing and eating qualities of potato noodles made with sandwich-type sheeting and conventional sheeting were compared. Results showed that the optimal moisture of inner-layer dough and outer-layer dough was 41 and 37%, respectively. The suitable ratio of the thickness of inner layer to that of outer layer was 3:1. The tensile strength of the sandwich-type dough sheet was 1.285 times higher than that of conventional dough sheet. The cooking loss of the sandwich-type noodles was 37.0% lower than that of conventional noodles, and the adhesiveness decreased by 51.0%. In the sandwich-type noodles, the compact gluten network structure of outer wheat layer prevented the leaching of soluble substances in the inner layer added with potato flakes, improving the cooking and eating qualities of potato noodles.
Collapse
Affiliation(s)
- Min Liao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yajing Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shuyi Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|