1
|
González MA, Goiri F, Cevidanes A, Hernández-Triana LM, Barandika JF, García-Pérez AL. Mosquito community composition in two major stopover aquatic ecosystems used by migratory birds in northern Spain. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:616-629. [PMID: 37134155 DOI: 10.1111/mve.12661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/13/2023] [Indexed: 05/05/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are common bloodsucking Diptera frequently found in aquatic environments, which are valuable ecosystems for many animal species, particularly migrating birds. Therefore, interactions between these animal species and mosquitoes may play a critical role in pathogen transmission. During 2018-2019, mosquitoes were collected from two aquatic ecosystems in northern Spain using different methodologies and identified using classical morphology and molecular tools. A total of 1529 males and females of 22 native mosquito species (including eight new records for the region) were trapped using CO2 -baited Centers for Disease Control and Prevention (CDC) traps and sweep netting. Among the blood-fed female mosquitoes, 11 vertebrate host species-six mammals and five birds-were identified using DNA barcoding. The developmental sites of eight mosquito species were determined across nine microhabitats, and 11 mosquito species were caught landing on humans. The flight period varied among mosquito species, with some peaking in the spring and others in the summer. Our study highlights the advantages of mosquito sampling using various techniques to comprehensively characterise species composition and abundance. Information on the trophic preferences, biting behaviour and influence of climatic variables on the ecology of mosquitoes is also provided.
Collapse
Affiliation(s)
- Mikel A González
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Spain
- Applied Zoology and Animal Conservation Research Group (ZAP), Department of Biology, University of the Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Fátima Goiri
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Aitor Cevidanes
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Luis M Hernández-Triana
- Vector-Borne Diseases Research Group, Virology Department, Animal and Plant Health Agency, Addlestone, UK
| | - Jesús F Barandika
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ana L García-Pérez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
2
|
Baril C, Pilling BG, Mikkelsen MJ, Sparrow JM, Duncan CAM, Koloski CW, LaZerte SE, Cassone BJ. The influence of weather on the population dynamics of common mosquito vector species in the Canadian Prairies. Parasit Vectors 2023; 16:153. [PMID: 37118839 PMCID: PMC10148408 DOI: 10.1186/s13071-023-05760-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/29/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Mosquito seasonal activity is largely driven by weather conditions, most notably temperature, precipitation, and relative humidity. The extent by which these weather variables influence activity is intertwined with the animal's biology and may differ by species. For mosquito vectors, changes in weather can also alter host-pathogen interactions thereby increasing or decreasing the burden of disease. METHODS In this study, we performed weekly mosquito surveillance throughout the active season over a 2-year period in Manitoba, Canada. We then used Generalized Linear Mixed Models (GLMMs) to explore the relationships between weather variables over the preceding 2 weeks and mosquito trap counts for four of the most prevalent vector species in this region: Oc. dorsalis, Ae. vexans, Cx. tarsalis, and Cq. perturbans. RESULTS More than 265,000 mosquitoes were collected from 17 sampling sites throughout Manitoba in 2020 and 2021, with Ae. vexans the most commonly collected species followed by Cx. tarsalis. Aedes vexans favored high humidity, intermediate degree days, and low precipitation. Coquillettidia perturbans and Oc. dorsalis activity increased with high humidity and high rainfall, respectively. Culex tarsalis favored high degree days, with the relationship between number of mosquitoes captured and precipitation showing contrasting patterns between years. Minimum trapping temperature only impacted Ae. vexans and Cq. perturbans trap counts. CONCLUSIONS The activity of all four mosquito vectors was affected by weather conditions recorded in the 2 weeks prior to trapping, with each species favoring different conditions. Although some research has been done to explore the relationships between temperature/precipitation and Cx. tarsalis in the Canadian Prairies, to our knowledge this is the first study to investigate other commonly found vector species in this region. Overall, this study highlights how varying weather conditions can impact mosquito activity and in turn species-specific vector potential.
Collapse
Affiliation(s)
- Cole Baril
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
| | - Ben G Pilling
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
| | - Milah J Mikkelsen
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
| | - Jessica M Sparrow
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
| | - Carlyn A M Duncan
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
| | - Cody W Koloski
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
| | - Stefanie E LaZerte
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
- Steffi LaZerte R Programming and Biological Consulting, Brandon, MB, Canada
| | - Bryan J Cassone
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada.
| |
Collapse
|
3
|
Buxton M, Nyamukondiwa C, Wasserman RJ, Othenin-Girard V, Pigeault R, Christe P, Glaizot O. Surveillance Studies Reveal Diverse and Potentially Pathogenic-Incriminated Vector Mosquito Species across Major Botswana Touristic Hotspots. INSECTS 2021; 12:913. [PMID: 34680682 PMCID: PMC8537495 DOI: 10.3390/insects12100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
Vector mosquitoes contribute significantly to the global burden of diseases in humans, livestock and wildlife. As such, the spatial distribution and abundance of mosquito species and their surveillance cannot be ignored. Here, we surveyed mosquito species across major tourism hotspots in semi-arid Botswana, including, for the first time, the Central Kalahari Game Reserve. Our results reported several mosquito species across seven genera, belonging to Aedes, Anopheles, Culex, Mansonia, Mimomyia, Coquillettidia and Uranotaenia. These results document a significant species inventory that may inform early warning vector-borne disease control systems and likely help manage the risk of emerging and re-emerging mosquito-borne infections.
Collapse
Affiliation(s)
- Mmabaledi Buxton
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P/Bag 016, Palapye 10071, Botswana; (C.N.); (R.J.W.)
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P/Bag 016, Palapye 10071, Botswana; (C.N.); (R.J.W.)
| | - Ryan J. Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P/Bag 016, Palapye 10071, Botswana; (C.N.); (R.J.W.)
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa
| | - Victor Othenin-Girard
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; (V.O.-G.); (R.P.); (P.C.); (O.G.)
| | - Romain Pigeault
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; (V.O.-G.); (R.P.); (P.C.); (O.G.)
- EBI Ecologie & Biologie des Interactions (UMR 7267), Université de Poitiers, 86000 Poitiers, France
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; (V.O.-G.); (R.P.); (P.C.); (O.G.)
| | - Olivier Glaizot
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; (V.O.-G.); (R.P.); (P.C.); (O.G.)
- Museum of Zoology, 1014 Lausanne, Switzerland
| |
Collapse
|
4
|
Inácio da Silva LM, Dezordi FZ, Paiva MHS, Wallau GL. Systematic Review of Wolbachia Symbiont Detection in Mosquitoes: An Entangled Topic about Methodological Power and True Symbiosis. Pathogens 2021; 10:39. [PMID: 33419044 PMCID: PMC7825316 DOI: 10.3390/pathogens10010039] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Wolbachia is an endosymbiotic bacterium that naturally infects several arthropods and nematode species. Wolbachia gained particular attention due to its impact on their host fitness and the capacity of specific Wolbachia strains in reducing pathogen vector and agricultural pest populations and pathogens transmission. Despite the success of mosquito/pathogen control programs using Wolbachia-infected mosquito release, little is known about the abundance and distribution of Wolbachia in most mosquito species, a crucial knowledge for planning and deployment of mosquito control programs and that can further improve our basic biology understanding of Wolbachia and host relationships. In this systematic review, Wolbachia was detected in only 30% of the mosquito species investigated. Fourteen percent of the species were considered positive by some studies and negative by others in different geographical regions, suggesting a variable infection rate and/or limitations of the Wolbachia detection methods employed. Eighty-three percent of the studies screened Wolbachia with only one technique. Our findings highlight that the assessment of Wolbachia using a single approach limited the inference of true Wolbachia infection in most of the studied species and that researchers should carefully choose complementary methodologies and consider different Wolbachia-mosquito population dynamics that may be a source of bias to ascertain the correct infectious status of the host species.
Collapse
Affiliation(s)
- Luísa Maria Inácio da Silva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
| | - Filipe Zimmer Dezordi
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife 50670-420, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Ciências da Vida, Universidade Federal de Pernambuco (UFPE), Centro Acadêmico do Agreste-Rodovia BR-104, km 59-Nova Caruaru, Caruaru 55002-970, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife 50670-420, Brazil
| |
Collapse
|
5
|
Hanford JK, Webb CE, Hochuli DF. Management of urban wetlands for conservation can reduce aquatic biodiversity and increase mosquito risk. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jayne K. Hanford
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity The University of Sydney Sydney NSW Australia
| | - Cameron E. Webb
- Marie Bashir Institute for Infectious Diseases and Biosecurity The University of Sydney Sydney NSW Australia
- Medical Entomology NSW Health Pathology Westmead Hospital Westmead NSW Australia
| | - Dieter F. Hochuli
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| |
Collapse
|
6
|
Johnson PH, Russell RC. Effects of attachment substrate, larval diet, and temperature on development and survival of immature Coquillettidia linealis (Skuse) and Coquillettidia xanthogaster (Edwards). JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:138-148. [PMID: 31124241 DOI: 10.1111/jvec.12338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
A sustainable colony allowed investigations into attachment substrates, diet and temperature in the development of the immature stages of Cq. linealis and its local congener Cq. xanthogaster. As immatures, these mosquitoes attach to submerged plants for respiration, and various field-collected and laboratory-raised plants were compared with non-living substrates. Hydroponically-grown wheat plant seedlings provided the most suitable attachment substrate. Development and survival of immatures to eclosion were investigated with three types and three quantities of a standardized diet. Development and survival at rearing temperatures between 10° and 30° C were also investigated. Diet type appeared to have little influence on development. However, at the lowest diet quantity, development to pupation was significantly reduced while the highest diet quantity impacted on the eclosion of pupae. Mean duration of immature development for Cq. linealis increased as temperature decreased. Time from 1st instar to median eclosion did not differ significantly between 23° C (6.0 weeks) and 25° C (5.3 weeks), although it was 10 weeks at 20° C, and 30° C was lethal. For Cq. xanthogaster, similarly, mean duration of immature development increased as temperature decreased, with development time from 1st instar to median eclosion significantly longer at 20° C (7.5 weeks) compared to 23° C (5.0 weeks) and 30° C (4.0 weeks).
Collapse
Affiliation(s)
- Petrina H Johnson
- University of Sydney, Department of Medical Entomology, Westmead Hospital, Westmead NSW 2145, Australia
| | - Richard C Russell
- University of Sydney, Department of Medical Entomology, Westmead Hospital, Westmead NSW 2145, Australia
| |
Collapse
|