1
|
Wang S, Wang H, Cui N, Wang S, Zhang C, Tang L, Tan W, Wang Y. Anaplasma bovis and Bartonella spp. in Libyan Jirds (Meriones libycus) from China. J Wildl Dis 2024; 60:792-794. [PMID: 38659240 DOI: 10.7589/jwd-d-23-00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/10/2024] [Indexed: 04/26/2024]
Abstract
Anaplasma bovis (1), Bartonella krasnovii (3), and Bartonella sp. (17) were detected in 80 Libyan jirds (Meriones libycus) from China. These findings extend the known host and geographic ranges of these pathogens, with neither A. bovis nor B. krasnovii previously confirmed in Libyan jirds.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Basic Medicine, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832002, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832002, People's Republic of China
- These authors contributed equally to this study
| | - Huiqian Wang
- Department of Basic Medicine, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832002, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832002, People's Republic of China
- These authors contributed equally to this study
| | - Nannan Cui
- Department of Basic Medicine, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832002, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832002, People's Republic of China
- These authors contributed equally to this study
| | - Suwen Wang
- Department of Basic Medicine, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832002, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832002, People's Republic of China
| | - Chunju Zhang
- Tumusuk City Centers for Disease Control and Prevention, 17 Qianhai East Street, Tumushuk City, Xinjiang Uygur Autonomous Region 843806, People's Republic of China
| | - Lijuan Tang
- Bayingol Vocational and Technical College, Korla City, Xinjiang Uygur Autonomous Region 841000, People's Republic of China
| | - Wenbo Tan
- Department of Basic Medicine, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832002, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832002, People's Republic of China
| | - Yuanzhi Wang
- Department of Basic Medicine, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832002, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832002, People's Republic of China
| |
Collapse
|
2
|
Mosha ET, Kuria JKN, Otiende M, Lekolool I. Molecular Detection of Anaplasma phagocytophilum in Small Mammals and Infesting Ticks in Laikipia County, Kenya. Vet Med Int 2024; 2024:5575162. [PMID: 38756415 PMCID: PMC11098608 DOI: 10.1155/2024/5575162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Anaplasmosis is a set of disease conditions of various mammals caused by bacteria species of the genus Anaplasma. These are sub-microscopic, Gram-negative, obligate intracellular pathogens that infect both vertebrate and invertebrate hosts. Significant species that infect domestic and wildlife animals include Anaplasma marginale, Anaplasma ovis, Anaplasma mesaeterum, Anaplasma platys, and Anaplasma phagocytophilum. Although A. phagocytophilum has a widespread distribution, there are only a few epidemiological reports from sub-Saharan Africa. This study focused on molecular detection and characterization of A. phagocytophilum in small mammals and their infesting ticks in Laikipia County, Kenya. A total of 385 blood and 84 tick archival samples from small mammals (155 females and 230 males) were analyzed. The blood samples were subjected to a nested PCR-HRM melt analysis using species-specific primers to amplify the 16S ribosomal RNA genes. The ticks were also subjected to nested PCR-HRM involving 16S rRNA gene primers. Anaplasma phagocytophilum DNA was detected in 19 out of 385 samples using species-specific 16S rRNA gene primers giving a prevalence of 4.9% for A. phagocytophilum. Analysis of the tick's samples using 16S rRNA gene species-specific primers also detected A. phagocytophilum in 3 samples from Haemaphysalis leachi ticks (3/84) equivalent to prevalence of 3.6%. Sequencing of 16S rRNA PCR products confirmed A. phagocytophilum in small mammals and ticks' samples. Phylogenetic analysis of the haplotype from this study demonstrated a close ancestral link with strains from Canis lupus familiaris, Alces alces, Apodemus agrarius, and ticks (Haemaphysalis longicornis) reported in Europe, China, and Africa. Comparison was also made with a known pathogenic A. phagocytophilum variant HA and a nonpathogenic variant 1 that were clustered into a distinctive clade different form haplotypes detected in this study. All the haplotype sequences for A. phagocytophilum from this study were submitted and registered in GenBank under the accession numbers OQ308965-OQ308976. Our study shows that small mammals and their associated ticks harbor A. phagocytophilum. The vector competence for H. leachi in A. phagocytophilum transmission should further be investigated.
Collapse
Affiliation(s)
- Erick Titus Mosha
- Department of Veterinary Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Joseph K. N. Kuria
- Department of Veterinary Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Moses Otiende
- Forensic Laboratory, Kenya Wildlife Service (KWS), Nairobi, Kenya
| | - Isaac Lekolool
- Forensic Laboratory, Kenya Wildlife Service (KWS), Nairobi, Kenya
| |
Collapse
|
3
|
Tian J, Liu J, Lu M, Chen X, Li K. Molecular evidence of Anaplasma spp. in blood-sucking flies from China and identification of a putative novel Anaplasma species. Microb Pathog 2023; 183:106318. [PMID: 37619912 DOI: 10.1016/j.micpath.2023.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Tabanids and stomoxes are important mechanical vectors for the transmission of pathogens. Although the agents they transmitted have been well studied, bacteria of the genus Anaplasma harbored by these flies have never been reported in China. In this study, 262 blood-sucking flies (128 Stomoxys calcitrans, 45 Tabanus birmanicus, 69 Tabanus hypomacros, and 20 Tabanus taiwanus) were collected from the Wuhan and Nanping cities of China. Anaplasma marginale, Anaplasma bovis, and Candidatus Anaplasma cinensis are detected in S. calcitrans from Wuhan City, with positive rates of 15.63%, 1.56%, and 7.81%, respectively. Out of our expectations, a putative novel Anaplasma species was identified in all three tabanid species (40.00% in T. birmanicus, 15.94% in T. hypomacros, and 10.00% in T. taiwanus) from Nanping City. The 16 S rRNA and groEL gene sequences have highest 99.37-99.75% and 91.46% identities to A. marginale, while the gltA gene sequences have highest 88.34% identity to Anaplasma centrale. In the phylogenetic trees, these strains form a distinct clade. Herein we name it "Candidatus Anaplasma nanpingensis". The present study shows the existence of multiple Anaplasma species in blood-sucking flies in China. This may be the first report that blood-sucking flies harbor Anaplasma in China.
Collapse
Affiliation(s)
- Junhua Tian
- Wuhan Center for Disease Control and Prevention, 430024, Wuhan City, Hubei Province, China
| | - Jing Liu
- Wuhan Center for Disease Control and Prevention, 430024, Wuhan City, Hubei Province, China
| | - Miao Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Changping District, Beijing City, China
| | - Xiaomin Chen
- Wuhan Center for Disease Control and Prevention, 430024, Wuhan City, Hubei Province, China
| | - Kun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Changping District, Beijing City, China.
| |
Collapse
|
4
|
Bush JC, Maggi RG, Breitschwerdt EB. Viability and Desiccation Resistance of Bartonella henselae in Biological and Non-Biological Fluids: Evidence for Pathogen Environmental Stability. Pathogens 2023; 12:950. [PMID: 37513797 PMCID: PMC10383451 DOI: 10.3390/pathogens12070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Pathogen environmental stability is an often-neglected research priority for pathogens that are known to be vector-transmitted. Bartonella henselae, the etiologic agent of Cat Scratch Disease, has become a "pathogen of interest" in several serious human illnesses, which include neoplastic, cardiovascular, neurocognitive, and rheumatologic conditions. Survival in the flea gut and feces as well as the association with a biofilm in culture-negative endocarditis provides insight into this organism's ability to adjust to environmental extremes. The detection of B. henselae DNA in blood and tissues from marine mammals also raises questions about environmental stability and modes of pathogen transmission. We investigated the ability of B. henselae to survive in fluid matrices chosen to mimic potential environmental sources of infective materials. Feline whole blood, serum and urine, bovine milk, and physiologic saline inoculated with a laboratory strain of B. henselae San Antonio 2 were subsequently evaluated by culture and qPCR at specified time intervals. Bacterial viability was also assessed following desiccation and reconstitution of each inoculated fluid matrix. Bartonella henselae SA2 was cultured from feline urine up to 24 h after inoculation, and from blood, serum, cow's milk, and physiologic saline for up to 7 days after inoculation. Of potential medical importance, bacteria were cultured following air-desiccation of all fluid inoculates. The viability and stability of Bartonella within biological and non-biological fluids in the environment may represent a previously unrecognized source of infection for animals and human beings.
Collapse
Affiliation(s)
- Janice C Bush
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Ricardo G Maggi
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Edward B Breitschwerdt
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
5
|
Mangombi-Pambou JB, Granjon L, Flirden F, Kane M, Niang Y, Davoust B, Fenollar F, Mediannikov O. Molecular Survey of Rodent-Borne Infectious Agents in the Ferlo Region, Senegal. Genes (Basel) 2023; 14:1107. [PMID: 37239466 PMCID: PMC10218615 DOI: 10.3390/genes14051107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Zoonotic pathogens are responsible for most infectious diseases in humans, with rodents being important reservoir hosts for many of these microorganisms. Rodents, thus, pose a significant threat to public health. Previous studies in Senegal have shown that rodents harbour a diversity of microorganisms, including human pathogens. Our study aimed to monitor the prevalence of infectious agents in outdoor rodents, which can be the cause of epidemics. We screened 125 rodents (both native and expanding) from the Ferlo region, around Widou Thiengoly, for different microorganisms. Analysis, performed on rodent spleens, detected bacteria from the Anaplasmataceae family (20%), Borrelia spp. (10%), Bartonella spp. (24%) and Piroplasmida (2.4%). Prevalences were similar between native and the expanding (Gerbillus nigeriae) species, which has recently colonised the region. We identified Borrelia crocidurae, the agent responsible for tick-borne relapsing fever, which is endemic in Senegal. We also identified two other not-yet-described bacteria of the genera Bartonella and Ehrlichia that were previously reported in Senegalese rodents. Additionally, we found a potential new species, provisionally referred to here as Candidatus Anaplasma ferloense. This study highlights the diversity of infectious agents circulating in rodent populations and the importance of describing potential new species and evaluating their pathogenicity and zoonotic potential.
Collapse
Affiliation(s)
- Joa Braïthe Mangombi-Pambou
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon;
- Department of Epidemiology of Parasitic Diseases, Aix-Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France; (F.F.); (B.D.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Laurent Granjon
- CBGP, IRD, CIRAD, INRAE, Institut Agro, University Montpellier, 34000 Montpellier, France;
| | - Fabien Flirden
- Department of Epidemiology of Parasitic Diseases, Aix-Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France; (F.F.); (B.D.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Mamadou Kane
- BIOPASS, CBGP-IRD, ISRA, UCAD, CIRAD, Campus de Bel-Air, Dakar 1386, Senegal; (M.K.)
| | - Youssoupha Niang
- BIOPASS, CBGP-IRD, ISRA, UCAD, CIRAD, Campus de Bel-Air, Dakar 1386, Senegal; (M.K.)
| | - Bernard Davoust
- Department of Epidemiology of Parasitic Diseases, Aix-Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France; (F.F.); (B.D.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Florence Fenollar
- IHU Méditerranée Infection, 13005 Marseille, France;
- IRD, AP-HM, SSA, VITROME, Aix-Marseille University, 13005 Marseille, France
| | - Oleg Mediannikov
- Department of Epidemiology of Parasitic Diseases, Aix-Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France; (F.F.); (B.D.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| |
Collapse
|
6
|
Mohd-Azami SNI, Loong SK, Khoo JJ, Husin NA, Lim FS, Mahfodz NH, Ishak SN, Mohd-Taib FS, Makepeace BL, AbuBakar S. Molecular Surveillance for Vector-Borne Bacteria in Rodents and Tree Shrews of Peninsular Malaysia Oil Palm Plantations. Trop Med Infect Dis 2023; 8:tropicalmed8020074. [PMID: 36828490 PMCID: PMC9965954 DOI: 10.3390/tropicalmed8020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Many human clinical cases attributed to vector-borne pathogens are underreported in Malaysia, especially in rural localities where healthcare infrastructures are lacking. Here, 217 small mammals, consisting of rodents and tree shrews, were trapped in oil palm plantations in the Peninsular Malaysia states of Johor and Perak. Species identification was performed using morphological and DNA barcoding analyses, and 203 small mammals were included in the detection of selected vector-borne bacteria. The DNA extracted from the spleens was examined for Orientia tsutsugamushi, Borrelia spp., Bartonella spp. and Rickettsia spp. using established PCR assays. The small mammals collected in this study included Rattus tanezumi R3 mitotype (n = 113), Rattus argentiventer (n = 24), Rattus tiomanicus (n = 22), Rattus exulans (n = 17), Rattus tanezumi sensu stricto (n = 1) and Tupaia glis (n = 40). Orientia tsutsugamushi, Borrelia spp. and Bartonella phoceensis were detected in the small mammals with the respective detection rates of 12.3%, 5.9% and 4.9%. Rickettsia spp., however, was not detected. This study encountered the presence of both Lyme disease and relapsing fever-related borreliae in small mammals collected from the oil palm plantation study sites. All three microorganisms (Orientia tsutsugamushi, Borrelia spp. and Bartonella phoceensis) were detected in the R. tanezumi R3 mitotype, suggesting that the species is a competent host for multiple microorganisms. Further investigations are warranted to elucidate the relationships between the ectoparasites, the small mammals and the respective pathogens.
Collapse
Affiliation(s)
- Siti Nurul Izzah Mohd-Azami
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Institute for Advanced Studies (IAS), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| | - Jing Jing Khoo
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Nurul Aini Husin
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Institute for Advanced Studies (IAS), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fang Shiang Lim
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nur Hidayana Mahfodz
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siti Nabilah Ishak
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Kuantan Fisheries Biosecurity Centre, Department of Fisheries Malaysia, Kuantan 25100, Malaysia
| | - Farah Shafawati Mohd-Taib
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Benjamin L. Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
7
|
Lu M, Meng C, Li Y, Zhou G, Wang L, Xu X, Li N, Ji Y, Tian J, Wang W, Li K. Rickettsia sp. and Anaplasma spp. in Haemaphysalis longicornis from Shandong province of China, with evidence of a novel species "Candidatus Anaplasma Shandongensis". Ticks Tick Borne Dis 2023; 14:102082. [PMID: 36403321 DOI: 10.1016/j.ttbdis.2022.102082] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
Haemaphysalis longicornis is one of the most dominant and widespread tick species in China. This species mainly infests wild animals and occasionally attacks humans, and has been associated with the transmission of a variety of zoonotic pathogens including spotted fever group Rickettsia (SFGR), severe fever with thrombocytopenia syndrome virus (SFTSV), Anaplasma phagocytophilum, Babesia spp. and Theileria spp.. Although there are increasing reports of various pathogens associated with H. longicornis, some neglected pathogens in certain areas still need to be studied. In this study, a total of 171 H. longicornis ticks were collected from goats in three locations of Shandong Province, Eastern China (Zibo, Linyi, and Qingdao cities), and subsequently screened for the presence of Rickettsia, Anaplasma, and Ehrlichia bacteria. A total of four bacterial species were identified and characterized. "Candidatus Rickettsia jingxinensis" was detected in one tick specimen from Zibo city. Of 98 ticks from Linyi city, 63.27% (62/98) were tested positive for Anaplasma capra and 5.10% (5/98) were positive for Anaplasma bovis. Interestingly, a novel Anaplasma species was detected and characterized in one tick specimen from Zibo and one other from Linyi, respectively. Genetic and phylogenetic analysis based on the 16S, gltA, groEL, and msp4 genes indicated that it was divergent from all known Anaplasma species but mostly related to A. phagocytophilum and "Cadidatus Anaplasma boleense". Based on where it was first detected, we named it "Candidatus Anaplasma shandongensis".
Collapse
Affiliation(s)
- Miao Lu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Changping District, Beijing city, China
| | - Chao Meng
- College of life sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 271016, Taian city, Shandong Province, China
| | - Yilin Li
- College of life sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 271016, Taian city, Shandong Province, China
| | - Guangyi Zhou
- College of life sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 271016, Taian city, Shandong Province, China
| | - Lin Wang
- Laoshan No.3 middle school, 266061, Qingdao city, Shandong Province, China
| | - Xiaoyu Xu
- College of life sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 271016, Taian city, Shandong Province, China
| | - Na Li
- College of life sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 271016, Taian city, Shandong Province, China
| | - Yuqi Ji
- College of life sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 271016, Taian city, Shandong Province, China
| | - Junhua Tian
- Wuhan Center for Disease Control and Prevention, 430024, Wuhan city, Hubei Province, China
| | - Wen Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Changping District, Beijing city, China
| | - Kun Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Changping District, Beijing city, China; Tianjin Key Laboratory of Food and Biotechnology, Tianjin University of Commerce, 300134, Beichen District, Tianjin City, China.
| |
Collapse
|
8
|
Pangjai D, Nimsuphan B, Petkanchanapong W, Wootta W, Boonyareth M, Rodkvamtook W, Boonmar S. First report of three novel Bartonella species isolated in rodents and shrews from nine provinces of Thailand. Vet World 2022; 15:1624-1631. [PMID: 36185510 PMCID: PMC9394139 DOI: 10.14202/vetworld.2022.1624-1631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Aim: Bartonella spp. are Gram-negative zoonotic bacteria that are transmitted to humans by several types of animal hosts, including rodents. Several studies have been conducted on the prevalence of Bartonella infections in rodents. However, the risk of rodent-associated Bartonella spp. infection in humans remains unclear. This study aimed to estimate the prevalence and genetic heterogeneity of Bartonella spp. in rodents and shrews from nine provinces of Thailand using culture and molecular techniques. Materials and Methods: A total of 860 blood samples from rodents and shrews across nine provinces of Thailand were collected from January 2013 to June 2016. Bartonella spp. were isolated from all samples using conventional culture techniques and polymerase chain reaction. Phylogenetic tree analysis was used to align the Bartonella sequences obtained from this study. Results: The prevalence of Bartonella spp. in rodents and shrews was 11.5% (99/860, 95% confidence interval: 9.38–13.64%). The following nine species of Bartonella were detected: Bartonella tribocorum, Bartonella rattimassiliensis, Bartonella queenslandensis, Bartonella elizabethae, Bartonella chanthaburi spp. nov., Bartonella satun spp. nov., Bartonella coopersplainsensis, Bartonella ranong spp. nov., and Bartonella henselae. The prevalence of Bartonella-positive animals differed significantly among provinces. Conclusion: To the best of our knowledge, the three novel Bartonella spp. isolated from rodents and shrews across Thailand were detected for the first time in this study. Further studies on the epidemiology of Bartonella infection in rodents and its interaction with human health should be conducted in accordance with the Thai government’s “One Health” approach to humans, animals, and the environment.
Collapse
Affiliation(s)
- Decha Pangjai
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Burin Nimsuphan
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Wimol Petkanchanapong
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Wattanapong Wootta
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Maskiet Boonyareth
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Wuttikon Rodkvamtook
- Armed Forces Research Institute of Medical Science, Royal Thai Army, Bangkok 10400, Thailand
| | - Sumalee Boonmar
- Akkhraratchakumari Veterinary College, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
9
|
Molecular Survey of Vector-Borne Pathogens in Ticks, Sheep Keds, and Domestic Animals from Ngawa, Southwest China. Pathogens 2022; 11:pathogens11050606. [PMID: 35631127 PMCID: PMC9143929 DOI: 10.3390/pathogens11050606] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Vector-borne pathogens are mainly transmitted by blood-feeding arthropods such as ticks, mosquitoes, fleas, lice, mites, etc. They pose a significant threat to animal and human health due to their worldwide distribution. Although much work has been performed on these pathogens, some neglected areas and undiscovered pathogens are still to be further researched. In this study, ticks (Haemaphysalis qinghaiensis), sheep keds (Melophagus ovinus), and blood samples from yaks and goats were collected in Ngawa Tibetan and Qiang Autonomous Prefecture located on the eastern edge of the Qinghai–Tibet Plateau, Southwest China. Several vector-borne bacterial pathogens were screened and studied. Anaplasma bovis strains representing novel genotypes were detected in ticks (8.83%, 37/419), yak blood samples (45.71%, 64/140), and goat blood samples (58.93%, 33/56). Two spotted fever group (SFG) Rickettsiae, Candidatus Rickettsia jingxinensis, and a novel Rickettsia species named Candidatus Rickettsia hongyuanensis were identified in ticks. Another Rickettsia species closely related to the Rickettsia endosymbiont of Polydesmus complanatus was also detected in ticks. Furthermore, a Coxiella species was detected in ticks (3.34%, 14/419), keds (1.89%, 2/106), and yak blood (0.71%, 1/140). Interestingly, another Coxiella species and a Coxiella-like bacterium were detected in a tick and a goat blood sample, respectively. These results indicate the remarkable diversity of vector-borne pathogens circulating in this area. Further investigations on their pathogenicity to humans and domestic animals are still needed.
Collapse
|
10
|
Saengsawang P, Morand S, Desquesnes M, Yangtara S, Inpankaew T. Molecular Detection of Bartonella Species in Rodents Residing in Urban and Suburban Areas of Central Thailand. Microorganisms 2021; 9:microorganisms9122588. [PMID: 34946189 PMCID: PMC8704634 DOI: 10.3390/microorganisms9122588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Bartonella spp. are Gram-negative zoonotic bacteria transmitted to humans via various blood-sucking arthropods. Rodents have been identified as reservoir hosts of several zoonotic pathogens, including Bartonella spp. In Thailand, studies of Bartonella spp. in rodents from urban areas are limited; thus, a study in this area is necessary. The objectives of this study were to detect Bartonella spp. in rodents in Thailand and to compare the species’ distribution across different areas. In total, 70 blood samples from rodents in urban and suburban areas were tested for Bartonella spp. using a conventional polymerase chain reaction that targeted the citrate synthase (gltA) gene. All Bartonella-positive sequences were analyzed using polymorphism in order to build a phylogenetic tree. Approximately 38% of the rodents studied contained Bartonella DNA. Both Rattus exulans (Pacific rat) and R. tanezumi (Asian house rat) contained Bartonella spp. Four species of Bartonella were detected in blood samples: B. tribocorum, B. phoceensis, B. grahamii, and B. rattimassiliensis. In addition, eight Pacific rats contained the B. kosoyi–B. tribocorum complex. Bartonella phoceensis and B. tribocorum–B. kosoyi complexes were found in a specific habitat (p < 0.05). Interestingly, only seven haplotypes were identified in the sequences analyzed, and only haplotype A was found in both rodent species. Finally, a monitoring program for zoonotic Bartonella infection, especially the B. kosoyi–B. tribocorum complex, B. phoceensis, B. grahamii, and B. rattimassiliensis should be established, especially in high-risk areas.
Collapse
Affiliation(s)
- Phirabhat Saengsawang
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80161, Thailand; or
| | - Serge Morand
- CNRS ISEM—CIRAD-ASTRE, Montpellier University, 34090 Montpellier, France;
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Marc Desquesnes
- InterTryp, Université de Montpellier CIRAD-IRD, 34090 Montpellier, France;
- Ecole Nationale Vétérinaire de Toulouse (ENVT), 31300 Toulouse, France
| | - Sarawut Yangtara
- Department of Companion Animal Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Tawin Inpankaew
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Correspondence:
| |
Collapse
|
11
|
Atelerix algirus, the North African Hedgehog: Suitable Wild Host for Infected Ticks and Fleas and Reservoir of Vector-Borne Pathogens in Tunisia. Pathogens 2021; 10:pathogens10080953. [PMID: 34451417 PMCID: PMC8399139 DOI: 10.3390/pathogens10080953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Small wild mammals are an important element in the emergence and transmission of vector-borne pathogens (VBPs). Among these species, hedgehogs have been found to be a reservoir of VBPs and host of arthropod vectors. Surveillance of VBPs in wildlife and their arthropods are crucial in a one health context. We conducted an exploratory study to screen Atelerix algirus hedgehogs and their infesting ticks and fleas for VBPs using a high throughput microfluidic real-time PCR system. Tested biopsies from hedgehogs were found to be naturally infected by Theileria youngi, Hepatozoon sp., Ehrlichia ewingii, Coxiella burnetii, and Candidatus Ehrlichia shimanensis. Similarly, Haemaphysalis erinacei and Rhipicephalus sanguineus tick species were infected by Ehrlichia ewingii, Rickettsia spp., Rickettsia massiliae, Borrelia sp., Coxiella burnetii, Rickettsia lusitaniae and Anaplasma sp. Archaeopsylla erinacei fleas were infected by Rickettsia asembonensis, Coxiella burnetii, and Rickettsia massiliae. Co-infections by two and three pathogens were detected in hedgehogs and infesting ticks and fleas. The microfluidic real-time PCR system enabled us not only to detect new and unexpected pathogens, but also to identify co-infections in hedgehogs, ticks, and fleas. We suggest that hedgehogs may play a reservoir role for VBPs in Tunisia and contribute to maintaining enzootic pathogen cycles via arthropod vectors.
Collapse
|