1
|
Li S, Yuan X, Mao L, Cai X, Xu X, Li J, Li B. First isolation of bovine coronavirus with a three-amino-acid deletion in the N gene causing severe respiratory and digestive disease in calve. Front Microbiol 2024; 15:1466096. [PMID: 39411436 PMCID: PMC11477655 DOI: 10.3389/fmicb.2024.1466096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 10/19/2024] Open
Abstract
Bovine coronavirus (BCoV), a persistent threat to global cattle industry, has caused significant economic losses worldwide. In this study, a viral strain was isolated from the intestinal content of a diseased calve, and identified by cytopathic effects observation, indirect immunofluorescence assay and electron microscopy. Results showed that BCoV NXWZ2310 belonging to the GIIb genotype and has a three-amino-acid deletion in the serine-rich region of the N gene. Importantly, the BCoV NXWZ2310 strain exhibited strong pathogenicity, causing nasal discharge and watery diarrhea in calves for 8 and 10 days, respectively. Viral shedding was detected in nasal, throat and rectal swabs at levels reaching 106.228 copies/mL, 105.0 copies /mL and 106.692 copies/mL, respectively. Pathological examination showed that NXWZ2310 resulted in parenchymal lesions of the pulmonary lobe and significant intestinal lesions. Both the lungs and intestines displayed marked microscopic lesions with clear viral antigens present. BCoV NXWZ2310 strain with N-gene deletion mutations, caused severe respiratory and digestive disease in calves. Therefore, effective strategies are needed for the prevention and control of this isolate.
Collapse
Affiliation(s)
- Siyuan Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuesong Yuan
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Li Mao
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Xuhang Cai
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jizong Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
2
|
de Mello JL, Lorencena D, Delai RR, Kunz AF, Possatti F, Alfieri AA, Takiuchi E. A comprehensive molecular analysis of bovine coronavirus strains isolated from Brazil and comparison of a wild-type and cell culture-adapted strain associated with respiratory disease. Braz J Microbiol 2024; 55:1967-1977. [PMID: 38381350 PMCID: PMC11154165 DOI: 10.1007/s42770-024-01287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
Bovine coronavirus (BCoV) has dual tropisms that can trigger enteric and respiratory diseases in cattle. Despite its global distribution, BCoV field strains from Brazil remain underexplored in studies investigating the virus's worldwide circulation. Another research gap involves the comparative analysis of S protein sequences in BCoV isolates from passages in cell lines versus direct sequencing from clinical samples. Therefore, one of the objectives of our study was to conduct a comprehensive phylogenetic analysis of BCoV strains identified from Brazil, including a respiratory strain obtained during this study, comparing them with global and ancestral BCoV strains. Additionally, we performed a comparative analysis between wild-type BCoV directly sequenced from the clinical sample (nasal secretion) and the cell culture-adapted strain, utilizing the Sanger method. The field strain and multiple cell passage in cell culture (HRT-18) adapted BCoV strain (BOV19 NS) detected in this study were characterized through molecular and phylogenetic analyses based on partial fragments of 1,448 nt covering the hypervariable region of the S gene. The analyses have demonstrated that different BCoV strains circulating in Brazil, and possibly Brazilian variants, constitute a new genotype (putative G15 genotype). Compared with the ancestral prototype (Mebus strain) of BCoV, 33 nt substitutions were identified of which 15 resulted in non-synonymous mutations (nine transitions and six transversions). Now, compared with the wild-type strain was identified only one nt substitution in nt 2,428 from the seventh passage onwards, which resulted in transversion, neutral-neutral charge, and one substitution of asparagine for tyrosine at aa residue 810 (N810Y).
Collapse
Affiliation(s)
- Janaina Lustosa de Mello
- Departament of Veterinary Sciences, Universidade Federal do Paraná-UFPR, Rua Pioneiro, 2153, Palotina, Paraná, 85950-000, Brazil
| | - Daniela Lorencena
- Departament of Veterinary Sciences, Universidade Federal do Paraná-UFPR, Rua Pioneiro, 2153, Palotina, Paraná, 85950-000, Brazil
| | - Ruana Renostro Delai
- Departament of Veterinary Sciences, Universidade Federal do Paraná-UFPR, Rua Pioneiro, 2153, Palotina, Paraná, 85950-000, Brazil
| | - Andressa Fernanda Kunz
- Departament of Veterinary Sciences, Universidade Federal do Paraná-UFPR, Rua Pioneiro, 2153, Palotina, Paraná, 85950-000, Brazil
| | - Flávia Possatti
- Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina-UEL, PO Box 6001, Londrina, Paraná, 86051-990, Brazil
| | - Amauri Alcindo Alfieri
- Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina-UEL, PO Box 6001, Londrina, Paraná, 86051-990, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil
| | - Elisabete Takiuchi
- Departament of Veterinary Sciences, Universidade Federal do Paraná-UFPR, Rua Pioneiro, 2153, Palotina, Paraná, 85950-000, Brazil.
| |
Collapse
|
3
|
Chothe SK, Byukusenge M, Sekhwal MK, Li L, LaBella LC, Jakka P, Palchak K, Barry R, Yon M, Nissly RH, Kelly KM, Jayarao BM, Surendran Nair M, Kuchipudi SV. Complete Genome Sequence of a Bovine Coronavirus Isolated from a Goat in Pennsylvania, USA. Microbiol Resour Announc 2023:e0012223. [PMID: 37133378 DOI: 10.1128/mra.00122-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
We report a complete genome sequence of bovine coronavirus (BCoV) isolated from a goat in the state of Pennsylvania in 2022. BCoV often causes calf scours and winter dysentery in cattle.
Collapse
Affiliation(s)
- Shubhada K Chothe
- Pennsylvania State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maurice Byukusenge
- Pennsylvania State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Manoj K Sekhwal
- Pennsylvania State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lingling Li
- Pennsylvania State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lindsey Cecelia LaBella
- Pennsylvania State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Padmaja Jakka
- Pennsylvania State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kay Palchak
- Pennsylvania State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rhiannon Barry
- Pennsylvania State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Michele Yon
- Pennsylvania State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ruth H Nissly
- Pennsylvania State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kathleen M Kelly
- Pennsylvania State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Bhushan M Jayarao
- Pennsylvania State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Meera Surendran Nair
- Pennsylvania State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Suresh V Kuchipudi
- Pennsylvania State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Cui X, Wang Y, Zhai J, Xue M, Zheng C, Yu L. Future trajectory of SARS-CoV-2: Constant spillover back and forth between humans and animals. Virus Res 2023; 328:199075. [PMID: 36805410 PMCID: PMC9972147 DOI: 10.1016/j.virusres.2023.199075] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023]
Abstract
SARS-CoV-2, known as severe acute respiratory syndrome coronavirus 2, is causing a massive global public health dilemma. In particular, the outbreak of the Omicron variants of SARS-CoV-2 in several countries has aroused the great attention of the World Health Organization (WHO). As of February 1st, 2023, the WHO had counted 671,016,135 confirmed cases and 6,835,595 deaths worldwide. Despite effective vaccines and drug treatments, there is currently no way to completely and directly eliminate SARS-CoV-2. Moreover, frequent cases of SARS-CoV-2 infection in animals have also been reported. In this review, we suggest that SARS-CoV-2, as a zoonotic virus, may be frequently transmitted between animals and humans in the future, which provides a reference and warning for rational prevention and control of COVID-19.
Collapse
Affiliation(s)
- Xinhua Cui
- State Key Laboratory of Human-Animal Zoonotic infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- State Key Laboratory of Human-Animal Zoonotic infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chunfu Zheng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Lu Yu
- State Key Laboratory of Human-Animal Zoonotic infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Seroprevalence and Risk Factors for Bovine Coronavirus Infection among Dairy Cattle and Water Buffalo in Campania Region, Southern Italy. Animals (Basel) 2023; 13:ani13050772. [PMID: 36899629 PMCID: PMC10000194 DOI: 10.3390/ani13050772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Cattle and water buffalo are the main livestock species that are raised in the Campania region, southern Italy, and they contribute significantly to the regional rural economy. Currently there are limited data on the prevalence of relevant impact infections, such as bovine coronavirus (BCov), an RNA virus that causes acute enteric and respiratory disease. Although these diseases are described primarily in cattle, there have been reports of spillovers to other ruminants, including water buffalo. Here, we determined the seroprevalence of BCoV in cattle and water buffalo in the Campania region of southern Italy. An overall seroprevalence of 30.8% was determined after testing 720 sampled animals with a commercial enzyme-linked immunosorbent assay. A risk factor analysis revealed that the seropositivity rates in cattle (49.2%) were higher than in water buffalo (5.3%). In addition, higher seroprevalence rates were observed in older and purchased animals. In cattle, housing type and location were not associated with higher seroprevalence. The presence of BCoV antibodies in water buffalo was associated with the practice of co-inhabiting with cattle, demonstrating that this practice is incorrect and promotes the transmission of pathogens between different species. Our study found a considerable seroprevalence, which is consistent with previous research from other countries. Our results provide information on the widespread distribution of this pathogen as well as the risk factors that are involved in its transmission. This information could be useful in the control and surveillance of this infection.
Collapse
|