1
|
Lunn DP, Burgess BA, Dorman DC, Goehring LS, Gross P, Osterrieder K, Pusterla N, Soboll Hussey G. Updated ACVIM consensus statement on equine herpesvirus-1. J Vet Intern Med 2024; 38:1290-1299. [PMID: 38497217 PMCID: PMC11099706 DOI: 10.1111/jvim.17047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Equine herpesvirus-1 (EHV-1) is a highly prevalent and frequently pathogenic infection of equids. The most serious clinical consequences of infection are abortion and equine herpesvirus myeloencephalopathy (EHM). The previous consensus statement was published in 2009 and considered pathogenesis, strain variation, epidemiology, diagnostic testing, vaccination, outbreak prevention and control, and treatment. A recent survey of American College of Veterinary Internal Medicine large animal diplomates identified the need for a revision to this original consensus statement. This updated consensus statement is underpinned by 4 systematic reviews that addressed key questions concerning vaccination, pharmaceutical treatment, pathogenesis, and diagnostic testing. Evidence for successful vaccination against, or effective treatment of EHV-1 infection was limited, and improvements in experimental design and reporting of results are needed in future studies of this important disease. This consensus statement also updates the topics considered previously in 2009.
Collapse
Affiliation(s)
- David P. Lunn
- School of Veterinary ScienceUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Brandy A Burgess
- College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - David C. Dorman
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Lutz S. Goehring
- Maxwell H. Gluck Equine Research CenterUniversity of Kentucky, College of Agriculture, Food and EnvironmentLexingtonKentuckyUSA
| | - Peggy Gross
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | | | - Nicola Pusterla
- School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Gisela Soboll Hussey
- College of Veterinary MedicineMichigan State University, Veterinary Medical CenterEast LansingMichiganUSA
| |
Collapse
|
2
|
Giessler KS, Goehring LS, Jacob SI, Davis A, Esser MM, Lee Y, Zarski LM, Weber PSD, Hussey GS. Impact of the host immune response on the development of equine herpesvirus myeloencephalopathy in horses. J Gen Virol 2024; 105:001987. [PMID: 38767608 PMCID: PMC11170125 DOI: 10.1099/jgv.0.001987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Herpesviruses establish a well-adapted balance with their host's immune system. Despite this co-evolutionary balance, infections can lead to severe disease including neurological disorders in their natural host. In horses, equine herpesvirus 1 (EHV-1) causes respiratory disease, abortions, neonatal foal death and myeloencephalopathy (EHM) in ~10 % of acute infections worldwide. Many aspects of EHM pathogenesis and protection from EHM are still poorly understood. However, it has been shown that the incidence of EHM increases to >70 % in female horses >20 years of age. In this study we used old mares as an experimental equine EHV-1 model of EHM to identify host-specific factors contributing to EHM. Following experimental infection with the neuropathogenic strain EHV-1 Ab4, old mares and yearling horses were studied for 21 days post-infection. Nasal viral shedding and cell-associated viremia were assessed by quantitative PCR. Cytokine/chemokine responses were evaluated in nasal secretions and cerebrospinal fluid (CSF) by Luminex assay and in whole blood by quantitative real-time PCR. EHV-1-specific IgG sub-isotype responses were measured by ELISA. All young horses developed respiratory disease and a bi-phasic fever post-infection, but only 1/9 horses exhibited ataxia. In contrast, respiratory disease was absent in old mares, but all old mares developed EHM that resulted in euthanasia in 6/9 old mares. Old mares also presented significantly decreased nasal viral shedding but higher viremia coinciding with a single fever peak at the onset of viremia. According to clinical disease manifestation, horses were sorted into an EHM group (nine old horses and one young horse) and a non-EHM group (eight young horses) for assessment of host immune responses. Non-EHM horses showed an early upregulation of IFN-α (nasal secretions), IRF7/IRF9, IL-1β, CXCL10 and TBET (blood) in addition to an IFN-γ upregulation during viremia (blood). In contrast, IFN-α levels in nasal secretions of EHM horses were low and peak levels of IRF7, IRF9, CXCL10 and TGF-β (blood) coincided with viremia. Moreover, EHM horses showed significantly higher IL-10 levels in nasal secretions, peripheral blood mononuclear cells and CSF and higher serum IgG3/5 antibody titres compared to non-EHM horses. These results suggest that protection from EHM depends on timely induction of type 1 IFN and upregulation cytokines and chemokines that are representative of cellular immunity. In contrast, induction of regulatory or TH-2 type immunity appeared to correlate with an increased risk for EHM. It is likely that future vaccine development for protection from EHM must target shifting this 'at-risk' immunophenotype.
Collapse
Affiliation(s)
- K. S. Giessler
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - L. S. Goehring
- MH Gluck Equine Research Center, College of Agriculture, Food & Environment, University of Kentucky, Lexington, KY, USA
| | - S. I. Jacob
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Allison Davis
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - M. M. Esser
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Y. Lee
- Pathology Core, Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - L. M. Zarski
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - P. S. D. Weber
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - G. S. Hussey
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|