1
|
Zhang A, Ding Y, Huang Q, Qian G, Munang'andu HM, Xu C, Xu J. Molecular cloning, characterization and expression analysis of the Chinese soft-shelled turtle (Pelodiscus sinensis) chemokine CXCL11. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109331. [PMID: 38142830 DOI: 10.1016/j.fsi.2023.109331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Chemokines are small, secreted proteins with chemoattractive properties, which play an important role in the recruitment and activation of immune cells. CXCL11 is a CXC chemokine specific for the CXCR3 receptors, which has been shown to mediate the generation of Th1-type immune responses and have bactericidal effects similar to defensins. Herein, we cloned the full-length cDNA of Chinese soft-shelled turtle (Pelodiscus sinensis) CXCL11, designated as PsCXCL11, which consist of an open reading frame (ORF) of 282 bp encoding 93 amino acids, with estimated molecular weight of 10.055 kDa and isoelectric point of 10.37. The deduced PsCXCL11 sequence had a signal peptide, a highly conserved family-specific small cytokine (SCY) domain, one putative N-glycosylation site and ten potential phosphorylation sites. Phylogenetic analysis showed a close relationship between P. sinensis and Chelydra Serpentina CXCL11. P. sinensis CXCL11 basal expression levels were higher in heart, kidney and spleen than in other organs of health turtles. Infections of Aeromonas hydrophila and Staphylococcus aureus led to significant upregulation of P. sinensis CXCL11 in the blood, while significant upregulation of PsCXCL11 were observed in liver and spleen after infection of A. hydrophila, but not S. aureus. PsCXCL11 recombinant protein with His-tag was successfully expressed by an auto-inducible expression system, and purified by Ni-NTA affinity chromatography. These findings laid a solid foundation for further research towards development of the Chinese soft-shelled turtle as a model for the role of CXCL11 in regulating inflammatory responses to stimulation by invading pathogens.
Collapse
Affiliation(s)
- Airu Zhang
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Yujie Ding
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Qiuya Huang
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Guoying Qian
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, People's Republic of China
| | | | - Cheng Xu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, 1433, Norway.
| | - Jiehao Xu
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Yalong M, Poapolathep S, Giorgi M, Khidkhan K, Klangkaew N, Phaochoosak N, Chaiyabutr N, Wongwaipairoj T, Poapolathep A. Pharmacokinetic disposition of marbofloxacin after intramuscular administration in estuarine crocodiles (Crocodylus porosus). J Vet Pharmacol Ther 2024; 47:48-53. [PMID: 37381629 DOI: 10.1111/jvp.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
To date, the pharmacokinetics of fluoroquinolones in estuarine crocodiles (Crocodylus porosus) have been reported for enrofloxacin but not for marbofloxacin (MBF), which is a broad-spectrum antibiotic used only in veterinary medicine. This study investigated the pharmacokinetics of MBF after intramuscular administration at two difference dosages (2 and 4 mg/kg body weight) in estuarine crocodiles and estimated pharmacokinetic/pharmacodynamic (PK/PD) surrogate parameters for the optimization of dosage regimens. Ten treated estuarine crocodiles were divided into two groups (n = 5) using a randomization procedure according to a parallel study design. Blood samples were collected at assigned times up to 168 h. MBF plasma samples were cleaned up using liquid-liquid extraction and analyzed using a validated high-performance liquid chromatography method with fluorescence detection. A non-compartment approach was used to fit the plasma concentration of MBF vs time curve for each crocodile. The plasma concentrations of MBF were quantifiable for up to 168 h in both groups. The elimination half-life values of MBF were long (33.99 and 39.28 h for 2 and 4 mg/kg, respectively) with no significant differences between the groups. The average plasma protein binding of MBF was 30.85%. According to the surrogated PK/PD parameter (AUC0-24 -to-MIC ratio >100-125), the 2 and 4 mg/kg dosing rates should be effective for bacteria with MIC values lower than 0.125 μg/mL and 0.35 μg/mL, respectively.
Collapse
Affiliation(s)
- Mona Yalong
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Kraisiri Khidkhan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Narumol Klangkaew
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Napasorn Phaochoosak
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Narongsak Chaiyabutr
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Shan Q, Huang H, Zheng G, Yin Y, Zhu X, Ma L, Zhou H, Xie W, Li L, Liu S, Wang J. Pharmacokinetics and Tissue Residue Profiles of Enrofloxacin in Crucian Carp ( Carassius auratus gibelio) Following Single and Multiple Oral Administration. Front Vet Sci 2022; 9:872828. [PMID: 35498735 PMCID: PMC9047015 DOI: 10.3389/fvets.2022.872828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022] Open
Abstract
The pharmacokinetics, tissue distribution, and elimination of enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP) were investigated to the crucian carp (Carassius auratus gibelio) after single (20 mg/kg b. w.) and multiple oral administration (20 mg/kg b.w. one time daily for 5 days) at 28°C. The concentrations of ENR and CIP in the plasma and tested tissues (muscle/skin, liver, and kidney) were detected simultaneously by high-performance liquid chromatography (HPLC), and the pharmacokinetic data were analyzed with a non-compartmental model using WinNonLin 6.1 PK software (Pharsight Corporation, Mountain View, CA, USA). The pharmacokinetic characteristics of ENR in crucian carp exhibited slow absorption, wide tissue distribution, and long elimination half-life. In the single-dose group, the peak concentrations (Cmax) of ENR in the plasma, muscle/skin, liver, and kidney were 8.93 μg/mL, 13.9 μg/g, 31.2 μg/g, and 27.3 μg/g, respectively, observed at 3 h, 6 h, 1 h, and 3 h after dosing. The elimination half-lives (T1/2λz ) of ENR in plasma, muscle/skin, liver, and kidney were calculated to be 67.4, 82.8, 94.4, and 114 h, respectively. In the multiple-dose group, the Cmax of ENR in the plasma, muscle/skin, liver, and kidney were 18.4 μg/mL, 26.8 μg/g, 82.8 μg/g, and 74.5 μg/g, respectively, achieved at 3 h, 6 h, 1 h, and 1 h after the last dose. The T1/2λz of ENR in the plasma, muscle/skin, liver, and kidney were calculated to be 76.4 h, 91.5 h, 114 h, and 148 h, respectively. During the multiple-dose administration, significant accumulations of ENR and CIP were observed in the plasma and tissues of crucian carp, possibly due to their long elimination half-lives. In both dose groups, the AUC0-∞ for both ENR and CIP followed the order of liver > kidney > muscle/skin > plasma. The finding suggested that the liver may play an important role in the metabolism of ENR. According to the calculated PK/PD indices of Cmax/minimum inhibitory concentrations (MIC) and AUC24h/MIC, the multiple-dose regimen would be highly effective against pathogenic bacteria with a MIC value of ≤ 1.84 μg/ml. Depletion studies indicated that a withdrawal period of at least 29 or 32 days was necessary to guarantee food security after single or multiple oral gavage administration at 28°C.
Collapse
Affiliation(s)
- Qi Shan
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Heqing Huang
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Guangming Zheng
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Yi Yin
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Lisha Ma
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Hao Zhou
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Wenping Xie
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Lichun Li
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Shugui Liu
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Jingxin Wang
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Effects of Growth Medium and Inoculum Size on Pharmacodynamics Activity of Marbofloxacin against Staphylococcus aureus Isolated from Caprine Clinical Mastitis. Antibiotics (Basel) 2021; 10:antibiotics10111290. [PMID: 34827228 PMCID: PMC8614650 DOI: 10.3390/antibiotics10111290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an important pathogen that causes clinical mastitis in goats and produces infections difficult to cure. Different antimicrobials as fluoroquinolones have been used against S. aureus. However, the studies developed to evaluate the bacterial drug interaction only have used the MIC as a single reference point with artificial growth media. The aims of this study were to describe the effect of marbofloxacin on S. aureus isolated from mastitis goats' milk by different approaches as the minimum inhibitory and bactericidal concentrations (MIC and MBC) in cation adjusted Mueller-Hinton broth (CAMHB), serum and milk of goats at two inoculum sizes of 105 and 108 CFU/mL, the determination and analysis of the time kill curves (TKC) by non-linear mixed effect models in each growth medium and inoculum size, as well as the estimation of their pharmacokinetics/pharmacodynamics (PK/PD) cutoff values. The results obtained indicate that MIC values were higher and increases 2,4-fold in serum and 3,6-fold in milk at high inoculum, as well as the EC50 values determined by each pharmacodynamics model. Finally, the PK/PD cutoff values defined as fAUC24/MIC ratios to achieve clinical efficacy were highly dependent on inoculum and growth medium, with median values of 60-180, especially at high inoculum in milk, suggesting that further studies are necessary to evaluate and optimize the best therapeutic strategies for treating S. aureus in lactating goats.
Collapse
|
5
|
Expression of a Shiga-Like Toxin during Plastic Colonization by Two Multidrug-Resistant Bacteria, Aeromonas hydrophila RIT668 and Citrobacter freundii RIT669, Isolated from Endangered Turtles ( Clemmys guttata). Microorganisms 2020; 8:microorganisms8081172. [PMID: 32752245 PMCID: PMC7465454 DOI: 10.3390/microorganisms8081172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Aeromonas hydrophila RIT668 and Citrobacter freundii RIT669 were isolated from endangered spotted turtles (Clemmys guttata). Whole-genome sequencing, annotation and phylogenetic analyses of the genomes revealed that the closest relative of RIT668 is A. hydrophila ATCC 7966 and Citrobacter portucalensis A60 for RIT669. Resistome analysis showed that A. hydrophila and C. freundii harbor six and 19 different antibiotic resistance genes, respectively. Both bacteria colonize polyethylene and polypropylene, which are common plastics, found in the environment and are used to fabricate medical devices. The expression of six biofilm-related genes—biofilm peroxide resistance protein (bsmA), biofilm formation regulatory protein subunit R (bssR), biofilm formation regulatory protein subunit S (bssS), biofilm formation regulator (hmsP), toxin-antitoxin biofilm protein (tabA) and transcriptional activator of curli operon (csgD)—and two virulence factors—Vi antigen-related gene (viaB) and Shiga-like toxin (slt-II)—was investigated by RT-PCR. A. hydrophila displayed a > 2-fold increase in slt-II expression in cells adhering to both polymers, C. freundii adhering on polyethylene displayed a > 2-fold, and on polypropylene a > 6-fold upregulation of slt-II. Thus, the two new isolates are potential pathogens owing to their drug resistance, surface colonization and upregulation of a slt-II-type diarrheal toxin on polymer surfaces.
Collapse
|
6
|
Griffioen JA, Lewbart GA, Papich MG. Population pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in clinically diseased or injured Eastern box turtles (Terrapene carolina carolina), yellow-bellied sliders (Trachemys scripta scripta), and river cooters (Pseudemys concinna). J Vet Pharmacol Ther 2020; 43:222-230. [PMID: 32052471 DOI: 10.1111/jvp.12843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/05/2020] [Accepted: 01/27/2020] [Indexed: 11/29/2022]
Abstract
Enrofloxacin is frequently administered to turtles in wildlife clinics during rehabilitation due to its wide spectrum of antibacterial activity and availability of injectable formulations. However, sufficient pharmacokinetic data to guide dosing are lacking. The objective of this study was to determine pharmacokinetic parameters of enrofloxacin and its active metabolite, ciprofloxacin, in chelonians presenting injured to a wildlife clinic. Thirty-six Eastern box turtles (EBT, Terrapene carolina carolina), 23 yellow-bellied sliders (YBS, Trachemys scripta scripta), and 13 river cooters (RC, Pseudemys concinna) received a single subcutaneous injection of enrofloxacin at 10 mg/kg. Blood samples were collected between 0 and 240 hr postinjection. Pharmacokinetic parameters were determined using nonlinear mixed-effects modeling (NMLE). Overall elimination half-life (T½) was over 75 hr, and varied among species. T½ was 63 hr in EBT and 79 hr in YBS, which is longer than in previous reports. The volume of distribution (steady-state) was 1.4 L/kg across turtle species, but highly variable-ranging from 0.4 L/kg in RC to 1.9 L/kg in YBS. Antibiotic concentrations were above a minimum inhibitory concentration value of 0.5 µg/ml for over 200 hr. These results indicate variable pharmacokinetic parameters for enrofloxacin among turtle species, which will help guide appropriate dosing protocols in injured turtles.
Collapse
Affiliation(s)
- John A Griffioen
- Turtle Rescue Team, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Gregory A Lewbart
- Turtle Rescue Team, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Mark G Papich
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Poapolathep S, Laovechprasit W, Giorgi M, Monanunsap S, Klangkaew N, Phaochoosak N, Kongchandee P, Poapolathep A. Pharmacokinetics of marbofloxacin in Green sea turtles (Chelonia mydas) following intravenous and intramuscular administration at two dosage rates. J Vet Pharmacol Ther 2019; 43:215-221. [PMID: 31851387 DOI: 10.1111/jvp.12832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/13/2019] [Accepted: 12/01/2019] [Indexed: 11/29/2022]
Abstract
Limited pharmacokinetic information to establish suitable therapeutic plans is available for green sea turtles. Therefore, the present study was conducted to evaluate the pharmacokinetic characteristics of marbofloxacin (MBF) in the green sea turtle, Chelonia mydas, following single intravenous (i.v.) or intramuscular (i.m.) administration at two dosages of 2 and 4 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 168 hr. MBF in plasma was extracted using liquid-liquid extraction and analyzed by a validated high-performance liquid chromatography (HPLC). MBF was quantifiable from 15 min to 96 hr after i.v. and i.m. administrations at two dose rates. A noncompartmental model was used to fit the plasma concentration of MBF versus time curve for each green sea turtle. The t1/2λz value, similar for both the dosages (22-28 hr), indicated that the overall rate of elimination of MBF in green sea turtles is relatively slow. The average i.m. F% ranged 88%-103%. MBF is a concentration-dependent drug and the AUC/MIC ratio is the best PK/PD predictor for its efficacy. The MBF dosage of 4 mg/kg appeared to produce an appropriate value of the PK-PD surrogate that predicts antibacterial success for disease caused by susceptible bacteria. In contrast, i.m. administration of MBF at a dosage of 2 mg/kg b.w. was not found to produce a suitable PK-PD surrogate index. However, further studies of multiple doses and plasma binding proteins are warranted to confirm an appropriate dosage regimen.
Collapse
Affiliation(s)
- Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | | | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Somchai Monanunsap
- Eastern Marine and Coastal Resources Research and Development Center, Rayong, Thailand
| | - Narumol Klangkaew
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Napasorn Phaochoosak
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Petcharat Kongchandee
- Eastern Marine and Coastal Resources Research and Development Center, Rayong, Thailand
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
8
|
Liu T, Han Y, Chen S, Zhao H. Global characterization and expression analysis of interferon regulatory factors in response to Aeromonas hydrophila challenge in Chinese soft-shelled turtle (Pelodiscus sinensis). FISH & SHELLFISH IMMUNOLOGY 2019; 92:821-832. [PMID: 31299462 DOI: 10.1016/j.fsi.2019.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/29/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Interferon regulatory factors (IRFs) were originally identified as transcriptional regulators of type I interferon (IFN) expression. Recent studies have widely identified the roles of IRFs as central mediators in immune defence against pathogen infection. However, the functional roles and expression profiles of IRFs are still unclear in Chinese soft-shelled turtle (Pelodiscus sinensis). In this study, eight members of the PsIRF family were identified in P. sinensis through a genome-wide search. These PsIRF genes contained the conserved domains of this group of proteins, including the N-terminal DNA-binding domain and C-terminal IRF-associated domain. Phylogenetic analyses among IRF homologs showed that the PsIRFs shared the closest phylogenetic relationships with IRFs of other turtle species. Further molecular evolutionary analyses revealed evolutionary conservation of the PsIRF genes. Moreover, expression profiling demonstrated that eight PsIRF genes exhibited constitutive expression in different tissues of P. sinensis. Several genes, such as PsIRF1, PsIRF2 and PsIRF4, showed predominant expression in the spleen and were significantly upregulated upon Aeromonas hydrophila infection. Remarkably, PsIRF1, PsIRF2 and PsIRF4 exhibited rapid increases in their protein expression levels post-infection and were mainly expressed in the splenic red pulp according to immunohistochemistry analysis. These results provide rich resources for further exploration of the roles of PsIRFs in immune regulation in P. sinensis and other turtles.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Yawen Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Huiying Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
9
|
Lai OR, Marín P, Laricchiuta P, Gelli D, Escudero E, Crescenzo G. Pharmacokinetics of injectable marbofloxacin after intravenous and intramuscular administration in red-eared sliders (Trachemys scripta elegans). J Vet Pharmacol Ther 2019; 43:129-134. [PMID: 31393637 DOI: 10.1111/jvp.12803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 11/30/2022]
Abstract
Fluoroquinolone antibacterial drugs are currently used in reptilian medicine because of their broad spectrum of activity including the most frequent pathogens of these species. The disposition kinetics of marbofloxacin (MBX) at a single dose of 2 mg/kg were determined in healthy red-eared sliders after intravenous (IV) and intramuscular (IM) administration. The influence of renal portal system on the bioavailability of the drug was investigated by using forelimb and hindlimb as IM injection sites. Apparent volume of distribution at steady-state (Vss ) and systemic clearance (Cl) of marbofloxacin after IV administration were estimated to be 48.21 ± 5.42 ml/kg and 23.38 ± 2.90 ml/hr·kg, respectively. The absolute bioavailabilities after IM route were 45.96% (forelimb) and 52.09% (hindlimb). The lack of statistically significant differences in most of the pharmacokinetic parameters after the two IM injection sites suggests a negligible influence of renal portal system in clinical use of MBX, although the Cmax after IMfore administration is advantageous, having into account the concentration-dependent action of this antibiotic. The absence of visible adverse reactions in the animals and the advantageous pharmacokinetic properties suggest the possibility of its safe and effective clinical use in red-eared sliders.
Collapse
Affiliation(s)
- Olimpia R Lai
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Pedro Marín
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | | | - Donatella Gelli
- Department of Clinic Veterinary Sciences, Faculty of Veterinary Medicine, University of Padua, Agripolis, Legnaro PD, Italy
| | - Elisa Escudero
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Giuseppe Crescenzo
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Bari, Valenzano, Italy
| |
Collapse
|
10
|
Liu T, Han Y, Chen S, Zhao H. Genome-wide identification of Toll-like receptors in the Chinese soft-shelled turtle Pelodiscus sinensis and expression analysis responding to Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:478-489. [PMID: 30716519 DOI: 10.1016/j.fsi.2019.01.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Toll-like receptors (TLRs) recognizing specific pathogen-associated molecular patterns play crucial roles in immune defence against pathogen invasion. Although recent advances in many species have reported the characterization and functional roles of TLRs in innate immunity, systematic knowledge of TLRs is still lacking in the Chinese soft-shelled turtle Pelodiscus sinensis. In this study, a genome-wide search was performed and identified 15 candidate PsTLR family genes in P. sinensis. Protein structure analysis revealed the conserved domain arrangements for these PsTLR proteins. Phylogenetic analysis indicated the evolutionary conservation of TLRs among various species. Additionally, a putative interaction network among PsTLR proteins was proposed and several functional partner proteins involved in TLR signalling pathway were predicted in P. sinensis. Expression profiling showed that these PsTLRs exhibited constitutive expression patterns in different tissues of P. sinensis. Moreover, several genes were highly expressed in the major immune organ spleen. Remarkably, the mRNA levels of PsTLR2-1, PsTLR4 and several TLR signalling molecules were significantly up-regulated in the spleen after Aeromonas hydrophila infection, indicating that PsTLRs and these genes responded to bacterial stress. These results provide rich information for the functional exploration of PsTLRs and will facilitate uncovering the molecular mechanisms underlying immune regulation in P. sinensis.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Yawen Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Huiying Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
11
|
Shang H, Zhou A, Jiang J, Liu Y, Xie J, Li S, Chen Y, Zhu X, Tan H, Li J. Inhibition of the fibrillation of highly amyloidogenic human calcitonin by cucurbit[7]uril with improved bioactivity. Acta Biomater 2018; 78:178-188. [PMID: 30076991 DOI: 10.1016/j.actbio.2018.07.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 02/08/2023]
Abstract
Protein/peptide fibrillation is an important challenge for biotechnological drug development. Salmon calcitonin (sCT) is currently used in the clinical treatment of bone-related diseases such as osteoporosis and hypercalcemia, but it still has the risk of immune responses. Although human calcitonin (hCT) would be a better choice in terms of immunogenicity, it has a strong tendency to irreversibly aggregate in aqueous solutions and form long amyloid fibrils, which significantly reduces its bioavailability and therapeutic potency. Here, we demonstrate that cucurbit[7]uril (CB[7]) can inhibit hCT fibrillation by supramolecular interaction with its aromatic groups (affinity: Phe16 > Tyr12 > Phe19 > Phe22). The hCT-CB[7] complex exhibits low cytotoxicity, even promotes osteoblast proliferation and osteogenic capacity of MC3T3 cells. Meanwhile the hCT-CB[7] complexes shows higher bioactivity compared to hCT in reducing blood calcium levels in rats, and also decreases the immunogenicity of hCT. These results suggest that CB[7] has the potential to improve the therapeutic potency of amyloidogenic protein/peptide drugs such as hCT.
Collapse
|
12
|
Shan Q, Wang J, Wang J, Ma L, Yang F, Yin Y, Huang R, Liu S, Li L, Zheng G. Pharmacokinetic/pharmacodynamic relationship of enrofloxacin against Aeromonas hydrophila in crucian carp (Carassius auratus gibelio). J Vet Pharmacol Ther 2018; 41:887-893. [PMID: 29943470 DOI: 10.1111/jvp.12678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/23/2018] [Indexed: 11/30/2022]
Abstract
The pharmacokinetic (PK) properties of enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP) were investigated in crucian carp following oral administration at different dose levels (5, 10, 20, 40 mg/kg body weight). The disposition kinetics of ENR was found to be linear over the dose range studied. Serum half-lives ranged from 64.56 to 72.68 hr. The in vitro and ex vivo activities of ENR in serum against a pathogenic strain of Aeromonas hydrophila were determined. In vitro and ex vivo bactericidal activity of ENR was concentration dependent. Dosing of 10 mg/kg resulted in an AUC/minimum inhibitory concentration (MIC) ratio of 368.92 hr and a Cmax /MIC ratio of 7.23, respectively, against A. hydrophila 147 (MIC = 0.48 μg/ml), indicating a likely high level of effectiveness in clinical infections caused by A. hydrophila with MIC value ≤ 0.48 μg/ml. Modeling of ex vivo growth inhibition data to the sigmoid Emax equation provided the values of AUC24 hr /MIC required to produce bacteriostasis, bactericidal activity, and elimination of bacteria, these values were 21.70, 53.01, and 125.21 hr, respectively. These findings in conjunction with MIC90 data suggested that ENR at the dose of 7.81 mg/kg predicted a positive clinical outcome and minimize the risk of emergence of resistance.
Collapse
Affiliation(s)
- Qi Shan
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Jingxin Wang
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Lisha Ma
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Fenghua Yang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yi Yin
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Ren Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Shugui Liu
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Lichun Li
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Guangming Zheng
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| |
Collapse
|
13
|
Vercelli C, De Vito V, Salvadori M, Barbero R, Re G, Gennero MS, Giorgi M. Blood concentrations of marbofloxacin and its in vivo effect in yellow-bellied slider turtles (Trachemys scripta scripta) after a single intracoelomic injection at 3 dose rates. J Exot Pet Med 2016. [DOI: 10.1053/j.jepm.2016.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Xu J, Zhao J, Li Y, Zou Y, Lu B, Chen Y, Ma Y, Xu H. Evaluation of differentially expressed immune-related genes in intestine of Pelodiscus sinensis after intragastric challenge with lipopolysaccharide based on transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2016; 56:417-426. [PMID: 27475104 DOI: 10.1016/j.fsi.2016.07.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/01/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Pelodiscus sinensis is the most common turtle species that has been raised in East and Southeast Asia. However, there are still limited studies about the immune defense mechanisms in its small intestine until now. In the present research, histological analysis and transcriptome analysis was performed on the small intestine of P. sinensis after intragastric challenge with LPS to explore its mechanisms of immune responses to pathogens. The result showed the number of intraepithelial lymphocytes (IELs) and goblet cells (GCs) in its intestine increased significantly at 48 h post-challenge with LPS by intragastrical route, indicating clearly the intestinal immune response was induced. Compared with the control, a total of 748 differentially expressed genes (DEGs) were identified, including 361 up-regulated genes and 387 down-regulated genes. Based on the Gene Ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG), 48 immune-related DEGs were identified, which were classified into 82 GO terms and 14 pathways. Finally, 18 DEGs, which were randomly selected, were confirmed by quantitative real-time PCR (qRT-PCR). Our results provide valuable information for further analysis of the immune defense mechanisms against pathogens in the small intestine of P. sinensis.
Collapse
Affiliation(s)
- Jiehao Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Jing Zhao
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Yiqun Li
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Yiyi Zou
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Binjie Lu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Yuyin Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Youzhi Ma
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Haisheng Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|