1
|
Yang Q, Zhang X, Wang Q, Zhong Y, Liu W. UPLC-MS/MS Method for Simultaneous Determination of Valnemulin and Its Metabolites in Crucian Carp: In Vivo Metabolism and Tissue Distribution Analyses. Molecules 2023; 28:5430. [PMID: 37513305 PMCID: PMC10383100 DOI: 10.3390/molecules28145430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Valnemulin (VML) is a semi-synthetic pleuromutilin derivative widely used to treat animal bacterial diseases. However, no study has comprehensively evaluated VML metabolism in aquatic animals, including crucian carp. This study aimed to investigate VML metabolism in crucian carp. VML metabolites in crucian carp were quantified via intraperitoneal injection and analyzed via ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Three VML metabolites were detected in crucian carp via ultra-performance liquid chromatography-tandem quadrupole and time-of-flight mass spectrometry (UPLC-Q-TOF/MS) structural analysis. The enrichment and metabolism rules of the metabolites were summarized based on tissue distribution and concentration changes of the three metabolites. The metabolites were mainly found in the liver at 0.1 h after VML injection. The levels of the metabolites were abundant in the bile from 4 h to 12 h and in the skin after 72 h. The levels of the metabolites in the bile first increased, then decreased. The metabolism in the liver was completed at 72 h. The metabolites were detected in the skin following a 72 h period, which increased with time.
Collapse
Affiliation(s)
- Qiyu Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Xiaojun Zhang
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Qianfeng Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Yaqian Zhong
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Wenjing Liu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
2
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 8: Pleuromutilins: tiamulin and valnemulin. EFSA J 2021; 19:e06860. [PMID: 34729088 PMCID: PMC8546795 DOI: 10.2903/j.efsa.2021.6860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The specific concentrations of tiamulin and valnemulin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tiamulin, while for valnemulin no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these two antimicrobials.
Collapse
|
3
|
Zhu X, Xu S, Lu L, Wang S, Zhao Q, Li D, Li J, Zhao H, Xu B. Preparation, characterization, and in vivo evaluation of a polymorphic form of valnemulin hydrogen tartrate. J Vet Sci 2019; 20:e16. [PMID: 30944538 PMCID: PMC6441808 DOI: 10.4142/jvs.2019.20.e16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/20/2019] [Accepted: 02/08/2019] [Indexed: 12/03/2022] Open
Abstract
We prepared a polymorphic form of valnemulin hydrogen tartrate (Form I) to overcome the instability and irritating odor of valnemulin hydrochloride that affect its use in the production and application of veterinary drugs. The physicochemical properties of Form I were characterized by scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The results showed the crystal structure and thermal properties of Form I were very different from those of a commercially available form of valnemulin hydrogen tartrate (Form II). Form I and Form II were more stable than valnemulin hydrochloride after storage under irradiation and high humidity conditions, respectively. The solubility of Form I was 2.6 times that of Form II, and Form I was selected for use in pharmaceutical kinetics experiments in vivo. Compared to valnemulin hydrochloride, after oral administration at a dose of 10 mg/kg in pigs, Form I had similar pharmaceutical kinetic behavior but a slightly higher area under the concentration–time curve from time zero to the last measurable concentration. Consequently, Form I should be suitable for the development of simple formulations and be effective in the clinical application of veterinary drugs.
Collapse
Affiliation(s)
- Xinle Zhu
- Safety Assessment Department, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Shixin Xu
- Safety Assessment Department, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Lianshou Lu
- Safety Assessment Department, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Shensen Wang
- Safety Assessment Department, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Qi Zhao
- Safety Assessment Department, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Dan Li
- Safety Assessment Department, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jian Li
- Safety Assessment Department, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Hui Zhao
- Safety Assessment Department, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Bingen Xu
- Safety Assessment Department, China Institute of Veterinary Drug Control, Beijing 100081, China
| |
Collapse
|
4
|
Sun F, Zhang H, Gonzales GB, Zhou J, Li Y, Zhang J, Jin Y, Wang Z, Li Y, Cao X, Zhang S, Yang S. Unraveling the Metabolic Routes of Retapamulin: Insights into Drug Development of Pleuromutilins. Antimicrob Agents Chemother 2018; 62:e02388-17. [PMID: 29358298 PMCID: PMC5913982 DOI: 10.1128/aac.02388-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022] Open
Abstract
Retapamulin, a semisynthetic pleuromutilin derivative, is exclusively used for the topical short-term medication of impetigo and staphylococcal infections. In the present study, we report that retapamulin is adequately and rapidly metabolized in vitro via various metabolic pathways, such as hydroxylation, including mono-, di-, and trihydroxylation, and demethylation. Like tiamulin and valnemulin, the major metabolic routes of retapamulin were hydroxylation at the 2β and 8α positions of the mutilin moiety. Moreover, in vivo metabolism concurred with the results of the in vitro assays. Additionally, we observed significant interspecies differences in the metabolism of retapamulin. Until now, modifying the side chain was the mainstream method for new drug discovery of the pleuromutilins. This approach, however, could not resolve the low bioavailability and short efficacy of the drugs. Considering the rapid metabolism of the pleuromutilins mediated by cytochrome P450 enzymes, we propose that blocking the active metabolic site (C-2 and C-8 motif) or administering the drug in combination with cytochrome P450 enzyme inhibitors is a promising pathway in the development of novel pleuromutilin drugs with slow metabolism and long efficacy.
Collapse
Affiliation(s)
- Feifei Sun
- College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, People's Republic of China
| | - Huiyan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
- Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Gerard Bryan Gonzales
- Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jinhui Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, People's Republic of China
| | - Yi Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, People's Republic of China
| | - Jinzhen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, People's Republic of China
| | - Yue Jin
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, Shandong, People's Republic of China
| | - Xingyuan Cao
- College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Suxia Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Shupeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, People's Republic of China
| |
Collapse
|