1
|
Li P, Ross CF, Luo ZX, Gidmark NJ. Head posture impacts mammalian hyoid position and suprahyoid muscle length: implication for swallowing biomechanics. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220552. [PMID: 37839446 PMCID: PMC10577029 DOI: 10.1098/rstb.2022.0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/05/2023] [Indexed: 10/17/2023] Open
Abstract
Instantaneous head posture (IHP) can extensively alter resting hyoid position in humans, yet postural effects on resting hyoid position remain poorly documented among mammals in general. Clarifying this relationship is essential for evaluating interspecific variation in hyoid posture across evolution, and understanding its implications for hyolingual soft tissue function and swallowing motor control. Using Didelphis virginiana as a model, we conducted static manipulation experiments to show that head flexion shifts hyoid position rostrally relative to the cranium across different gapes. IHP-induced shifts in hyoid position along the anteroposterior axis are comparable to in vivo hyoid protraction distance during swallowing. IHP also has opposite effects on passive genio- and stylohyoid muscle lengths. High-speed biplanar videoradiography suggests Didelphis consistently swallows at neutral to flexed posture, with stereotyped hyoid kinematics across different head postures. IHP change can affect suprahyoid muscle force production by shifting their positions on the length-tension curve, and redirecting lines of action and the resultant force from supra- and infrahyoid muscles. We hypothesize that demands on muscle performance may constrain the range of swallowing head postures in mammals. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Peishu Li
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago IL, 60637, USA
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago IL, 60637, USA
| | - Zhe-Xi Luo
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago IL, 60637, USA
| | | |
Collapse
|
2
|
de Reus K, Carlson D, Lowry A, Gross S, Garcia M, Rubio-Garcia A, Salazar-Casals A, Ravignani A. Vocal tract allometry in a mammalian vocal learner. J Exp Biol 2022; 225:275049. [PMID: 35483405 PMCID: PMC9124484 DOI: 10.1242/jeb.243766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/14/2022] [Indexed: 11/20/2022]
Abstract
Acoustic allometry occurs when features of animal vocalisations can be predicted from body size measurements. Despite this being considered the norm, allometry sometimes breaks, resulting in species sounding smaller or larger than expected for their size. A recent hypothesis suggests that allometry-breaking mammals cluster into two groups: those with anatomical adaptations to their vocal tracts and those capable of learning new sounds (vocal learners). Here, we tested which mechanism is used to escape from acoustic allometry by probing vocal tract allometry in a proven mammalian vocal learner, the harbour seal (Phoca vitulina). We tested whether vocal tract structures and body size scale allometrically in 68 young individuals. We found that both body length and body mass accurately predict vocal tract length and one tracheal dimension. Independently, body length predicts vocal fold length while body mass predicts a second tracheal dimension. All vocal tract measures are larger in weaners than in pups and some structures are sexually dimorphic within age classes. We conclude that harbour seals do comply with anatomical allometric constraints. However, allometry between body size and vocal fold length seems to emerge after puppyhood, suggesting that ontogeny may modulate the anatomy–learning distinction previously hypothesised as clear cut. We suggest that seals, and perhaps other species producing signals that deviate from those expected from their vocal tract dimensions, may break allometry without morphological adaptations. In seals, and potentially other vocal learning mammals, advanced neural control over vocal organs may be the main mechanism for breaking acoustic allometry. Summary: Harbour seals are vocal learners that can escape acoustic allometry despite complying with anatomical allometric constraints. Advanced neural control over their vocal organs may allow them to break acoustic allometry.
Collapse
Affiliation(s)
- Koen de Reus
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Artificial Intelligence Lab, Vrije Universiteit Brussel, 1050 Brussels, Belgium.,Research Department, Sealcentre Pieterburen, 9968 AG Pieterburen, The Netherlands
| | - Daryll Carlson
- Research Department, Sealcentre Pieterburen, 9968 AG Pieterburen, The Netherlands.,Department of Earth System Science, Stanford University, Stanford, CA 94305-4216, USA
| | - Alice Lowry
- Research Department, Sealcentre Pieterburen, 9968 AG Pieterburen, The Netherlands.,School of Environmental Sciences, University of Liverpool, Liverpool, L3 5DA, UK
| | - Stephanie Gross
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, 25761 Büsum, Germany
| | - Maxime Garcia
- Animal Behaviour, Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland.,Center for the Interdisciplinary Study of Language Evolution, University of Zurich, CH-8050 Zürich, Switzerland
| | - Ana Rubio-Garcia
- Research Department, Sealcentre Pieterburen, 9968 AG Pieterburen, The Netherlands
| | - Anna Salazar-Casals
- Research Department, Sealcentre Pieterburen, 9968 AG Pieterburen, The Netherlands
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Research Department, Sealcentre Pieterburen, 9968 AG Pieterburen, The Netherlands.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Redaelli L, Galimberti F, Sanvito S. Phenotype constrains the vocal tract in the most dimorphic mammal, the southern elephant seal. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of mammal acoustic communication was revolutionized by the application of the source-filter theory, originally developed for human speech. The theory states that the vocal tract is constrained by body anatomy and, therefore, creates a structural link between phenotype and acoustic formants, providing a basis for honest signalling. The phenotype-formants link was validated in many species, but the phenotype-vocal tract link was rarely assessed. We used 2D videogrammetry to estimate the vocal tract length of wild southern elephant seal males (Mirounga leonina Linnaeus, 1758) during their normal vocalization behaviour. We showed that: 1) the vocal tract can be measured non-invasively in a wild large mammal; 2) the vocal tract depends on the structural phenotype (age, body length, and skull size); 3) the nasal tract is more related to the structural phenotype than the buccal tract; 4) the dependence on size, and body length in particular, is stronger than the dependence on age. All together, the phenotypic constraint on vocal tract provides the anatomical basis for honest signalling in elephant seals.
Collapse
Affiliation(s)
- Laura Redaelli
- Università degli Studi di Milano, 9304, Dipartimento di Scienze Naturali, Milano, Italy, 20122
| | - Filippo Galimberti
- Elephant Seal Research Group, 263286, Sea Lion Island, FALKLAND, Falkland Islands [Malvinas]
| | - Simona Sanvito
- Elephant Seal Research Group, 263286, Sea Lion Island, FALKLAND, Falkland Islands [Malvinas]
| |
Collapse
|
4
|
HALIGÜR A, ÖZKADİF S. Kızıl Tilki (Vulpes vulpes)’de Larynx Kıkırdak’larının ve Trachea’nın Morfolojik Çalışması. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2021. [DOI: 10.24880/maeuvfd.944691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
5
|
Li P, Ross CF, Luo ZX. Morphological disparity and evolutionary transformations in the primate hyoid apparatus. J Hum Evol 2021; 162:103094. [PMID: 34808474 DOI: 10.1016/j.jhevol.2021.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 10/19/2022]
Abstract
The hyoid apparatus plays an integral role in swallowing, respiration, and vocalization in mammals. Most placental mammals have a rod-shaped basihyal connected to the basicranium via both soft tissues and a mobile bony chain-the anterior cornu-whereas anthropoid primates have broad, shield-like or even cup-shaped basihyals suspended from the basicranium by soft tissues only. How the unique anthropoid hyoid morphology evolved is unknown, and hyoid morphology of nonanthropoid primates is poorly documented. Here we use phylogenetic comparative methods and linear morphometrics to address knowledge gaps in hyoid evolution among primates and their euarchontan outgroups. We find that dermopterans have variable reduction of cornu elements. Cynocephalus volans are sexually dimorphic in hyoid morphology. Tupaia and all lemuroids except Daubentonia have a fully ossified anterior cornu connecting a rod-shaped basihyal to the basicranium; this is the ancestral mammalian pattern that is also characteristic of the last common ancestor of Primates. Haplorhines exhibit a reduced anterior cornu, and anthropoids underwent further increase in basihyal aspect ratio values and in relative basihyal volume. Convergent with haplorhines, lorisoid strepsirrhines independently evolved a broad basihyal and reduced anterior cornua. While a reduced anterior cornu is hypothesized to facilitate vocal tract lengthening and lower formant frequencies in some mammals, our results suggest vocalization adaptations alone are unlikely to drive the iterative reduction of anterior cornua within Primates. Our new data on euarchontan hyoid evolution provide an anatomical basis for further exploring the form-function relationships of the hyoid across different behaviors, including vocalization, chewing, and swallowing.
Collapse
Affiliation(s)
- Peishu Li
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA.
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA
| | - Zhe-Xi Luo
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
6
|
Bettoni S, Stoeger A, Rodriguez C, Fitch WT. Airborne vocal communication in adult neotropical otters (Lontra longicaudis). PLoS One 2021; 16:e0251974. [PMID: 34038461 PMCID: PMC8153427 DOI: 10.1371/journal.pone.0251974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/07/2021] [Indexed: 11/19/2022] Open
Abstract
Most aquatic mammals have complex social and communication systems. Interestingly, little is known about otters' vocal communication compared to other aquatic mammals. Here, for the first time, we acoustically describe vocalizations of the neotropical otter (Lontra longicaudis), a solitary and endangered New World otter species. We recorded vocalizations and behavioral contexts from six captive neotropical otters at Projeto Lontra, Santa Catarina Island, Brazil. Analysis of acoustic parameters were used to classify the vocalizations according to structure and context. We describe six call types with highly tonal as well as chaotic vocalizations with fundamental frequencies ranging from 90 to 2500 Hz. Additionally, we identified sex differences in the usage of calls. Results suggest that the neotropical river otter has a rich vocal repertoire, similar in complexity to other solitary otter species, but less complex than that of the social giant otter. Despite differences in sociality, phylogeny and ecology, L. longicaudis seems to possess vocalizations homologous to those found in other otters (e.g. hah and chirp), suggesting phylogenetic inertia in otter communicative repertoire. Otters thus offer an interesting but neglected group to explore the evolution of communication systems.
Collapse
Affiliation(s)
- Sabrina Bettoni
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Angela Stoeger
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Camilo Rodriguez
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - W. Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Linn SN, Schmidt S, Scheumann M. Individual distinctiveness across call types of the southern white rhinoceros ( Ceratotherium simum simum). J Mammal 2021; 102:440-456. [PMID: 34121952 PMCID: PMC8189687 DOI: 10.1093/jmammal/gyab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 01/21/2021] [Indexed: 01/04/2023] Open
Abstract
Individual distinctiveness in the acoustic structure of vocalizations provides a basis for individual recognition in mammals and plays an important role in social behavior. Within a species, call types can differ in individual distinctiveness, which can be explained by three factors, namely differences in the social function, the distance of the caller to the receiver, and the acoustic structure of the call. We explored the variation in individual distinctiveness across three call types (Grunt, Hiss, Snort) of the southern white rhinoceros (Ceratotherium simum simum) and investigated to what extent the abovementioned factors account for individual distinctiveness. Calls were recorded from 25 adult southern white rhinoceroses in six different zoos. We used three methods to compare the level of individual distinctiveness across call types, namely discriminant function analysis (DFA), potential for individual identity coding (PIC), and the information criterion (Hs). The three call types possessed an acoustic structure capable of showing individual variation to different extents. Individual distinctiveness was lowest for Snorts, intermediate for Hisses, and highest for Grunts. The level of individual distinctiveness of all three call types was lower than that previously reported for Pant calls of this species. Calls functioning to mediate intragroup social interactions had the highest individual distinctiveness. This highlights that a given communicative function and the need for individual discrimination during a social interaction have a major influence on the degree of individual distinctiveness.
Collapse
Affiliation(s)
| | - Sabine Schmidt
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Marina Scheumann
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| |
Collapse
|
8
|
Flores D, Eldridge EI, Elminowski EE, Dickinson E, Hartstone-Rose A. The howl of Rancho La Brea: Comparative anatomy of modern and fossil canid hyoid bones. J Morphol 2020; 281:646-652. [PMID: 32302429 DOI: 10.1002/jmor.21130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 11/07/2022]
Abstract
The Rancho La Brea (RLB) fossil collection housed at the La Brea Tar Pits and Museum in Los Angeles, California, is one of the richest collections of carnivoran fossils in the world. The collection is also particularly well known for the preservation of rare and understudied bones in the tar, including the small bony apparatus that is of particular interest to this study, the hyoid. The La Brea collection houses hyoids from several extinct carnivoran species, some of the most common being those of Canis dirus (the dire wolf) and Canis latrans (the coyote). In this study, we compare fossilized hyoid elements from these two canids to samples from modern large congeners, namely: Canis lupus (the gray wolf), Canis rufus (the red wolf), and modern C. latrans. Seven or nine measurements were taken on each bone of the hyoid apparatus, and principal component analyses were performed in order to determine statistical significance between species. For most of the bones, the majority of the variation was driven by size. Dire wolves could be clearly differentiated from all other canids for all elements; the hyoid apparatus of C. dirus is larger and more robust than that of C. lupus. Most of the bony elements could not be distinguished between red wolves or modern coyotes. However, there are enough, complete fossil coyote basihyoids to compare with those of their modern relatives, and in several metrics (both PC shapes and overall size), RLB and modern C. latrans are significantly different. As larger hyoids have been associated with a lower vocal frequency, this distinction would have resulted in the vocalizations of C. dirus occurring at a lower frequency than those produced by C. lupus and perhaps lower vocalizations in ice age coyotes than their modern relatives. RESEARCH HIGHLIGHTS: We quantify morphological differences in the hyoid of dire wolves (Canis dirus) relative to extant grey wolves (Canis lupus), and hypothesize that, as larger hyoids have been associated with a lower vocal frequency, the vocalizations of C. dirus might have occurred at a lower frequency than those by C. lupus. Likewise, modern and fossil coyotes (Canis latrans) show a significant difference in basihyoid size and shape, potentially indicating that modern and ancient coyotes might have sounded differently.
Collapse
Affiliation(s)
- Deanna Flores
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, USA
| | - Emma I Eldridge
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Erin E Elminowski
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Edwin Dickinson
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
9
|
Hasiniaina AF, Radespiel U, Kessler SE, Rina Evasoa M, Rasoloharijaona S, Randrianambinina B, Zimmermann E, Schmidt S, Scheumann M. Evolutionary significance of the variation in acoustic communication of a cryptic nocturnal primate radiation ( Microcebus spp.). Ecol Evol 2020; 10:3784-3797. [PMID: 32313636 PMCID: PMC7160168 DOI: 10.1002/ece3.6177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 11/06/2022] Open
Abstract
Acoustic phenotypic variation is of major importance for speciation and the evolution of species diversity. Whereas selective and stochastic forces shaping the acoustic divergence of signaling systems are well studied in insects, frogs, and birds, knowledge on the processes driving acoustic phenotypic evolution in mammals is limited. We quantified the acoustic variation of a call type exchanged during agonistic encounters across eight distinct species of the smallest-bodied nocturnal primate radiation, the Malagasy mouse lemurs. The species live in two different habitats (dry forest vs. humid forest), differ in geographic distance to each other, and belong to four distinct phylogenetic clades within the genus. Genetically defined species were discriminated reliably on the phenotypic level based on their acoustic distinctiveness in a discriminant function analysis. Acoustic variation was explained by genetic distance, whereas differences in morphology, forest type, or geographic distance had no effect. The strong impact of genetics was supported by a correlation between acoustic and genetic distance and the high agreement in branching pattern between the acoustic and molecular phylogenetic trees. In sum, stochastic factors such as genetic drift best explained acoustic diversification in a social communication call of mouse lemurs.
Collapse
Affiliation(s)
| | - Ute Radespiel
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Sharon E. Kessler
- Department of PsychologyFaculty of Natural SciencesUniversity of StirlingStirlingScotland
- Department of AnthropologyDurham UniversityDurhamUK
| | - Mamy Rina Evasoa
- Faculty of Science, Technology and EnvironmentUniversity of MahajangaMahajangaMadagascar
| | | | | | - Elke Zimmermann
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Sabine Schmidt
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Marina Scheumann
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHannoverGermany
| |
Collapse
|
10
|
Ravignani A, Gross S, Garcia M, Rubio-Garcia A, de Boer B. How small could a pup sound? The physical bases of signaling body size in harbor seals. Curr Zool 2017; 63:457-465. [PMID: 29492005 PMCID: PMC5804196 DOI: 10.1093/cz/zox026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/08/2017] [Indexed: 11/24/2022] Open
Abstract
Vocal communication is a crucial aspect of animal behavior. The mechanism which most mammals use to vocalize relies on three anatomical components. First, air overpressure is generated inside the lower vocal tract. Second, as the airstream goes through the glottis, sound is produced via vocal fold vibration. Third, this sound is further filtered by the geometry and length of the upper vocal tract. Evidence from mammalian anatomy and bioacoustics suggests that some of these three components may covary with an animal's body size. The framework provided by acoustic allometry suggests that, because vocal tract length (VTL) is more strongly constrained by the growth of the body than vocal fold length (VFL), VTL generates more reliable acoustic cues to an animal's size. This hypothesis is often tested acoustically but rarely anatomically, especially in pinnipeds. Here, we test the anatomical bases of the acoustic allometry hypothesis in harbor seal pups Phoca vitulina. We dissected and measured vocal tract, vocal folds, and other anatomical features of 15 harbor seals post-mortem. We found that, while VTL correlates with body size, VFL does not. This suggests that, while body growth puts anatomical constraints on how vocalizations are filtered by harbor seals' vocal tract, no such constraints appear to exist on vocal folds, at least during puppyhood. It is particularly interesting to find anatomical constraints on harbor seals' vocal tracts, the same anatomical region partially enabling pups to produce individually distinctive vocalizations.
Collapse
Affiliation(s)
- Andrea Ravignani
- Veterinary & Research Department, Sealcentre Pieterburen, Hoofdstraat 94a, Pieterburen, AG 9968, The Netherlands
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
- Language and Cognition Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, XD 6525, The Netherlands
| | - Stephanie Gross
- Veterinary & Research Department, Sealcentre Pieterburen, Hoofdstraat 94a, Pieterburen, AG 9968, The Netherlands
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, Buesum 25761, Germany
| | - Maxime Garcia
- ENES Lab/Neuro-PSI, CNRS UMR9197, University of Lyon/Saint Etienne, 23 rue Paul Michelon, 42023 Saint-Etienne cedex 2, France
| | - Ana Rubio-Garcia
- Veterinary & Research Department, Sealcentre Pieterburen, Hoofdstraat 94a, Pieterburen, AG 9968, The Netherlands
| | - Bart de Boer
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| |
Collapse
|
11
|
Abstract
For both humans and other animals, the ability to combine information obtained through different senses is fundamental to the perception of the environment. It is well established that humans form systematic cross-modal correspondences between stimulus features that can facilitate the accurate combination of sensory percepts. However, the evolutionary origins of the perceptual and cognitive mechanisms involved in these cross-modal associations remain surprisingly underexplored. In this review we outline recent comparative studies investigating how non-human mammals naturally combine information encoded in different sensory modalities during communication. The results of these behavioural studies demonstrate that various mammalian species are able to combine signals from different sensory channels when they are perceived to share the same basic features, either because they can be redundantly sensed and/or because they are processed in the same way. Moreover, evidence that a wide range of mammals form complex cognitive representations about signallers, both within and across species, suggests that animals also learn to associate different sensory features which regularly co-occur. Further research is now necessary to determine how multisensory representations are formed in individual animals, including the relative importance of low level feature-related correspondences. Such investigations will generate important insights into how animals perceive and categorise their environment, as well as provide an essential basis for understanding the evolution of multisensory perception in humans.
Collapse
|
12
|
Plotsky K, Rendall D, Chase K, Riede T. Cranio-facial remodeling in domestic dogs is associated with changes in larynx position. J Anat 2016; 228:975-83. [PMID: 26863925 DOI: 10.1111/joa.12452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2016] [Indexed: 11/26/2022] Open
Abstract
The hyo-laryngeal complex is a multi-segmented structure integrating the oral and pharyngeal cavities and thus a variety of critical functions related to airway control, feeding, and vocal communication. Currently, we lack a complete understanding of how the hyoid complex, and the functions it mediates, can also be affected by changes in surrounding cranio-facial dimensions. Here, we explore these relationships in a breed of domestic dog, the Portuguese Water Dog, which is characterized by strong cranio-facial variation. We used radiographic images of the upper body and head of 55 adult males and 51 adult females to obtain detailed measures of cranio-facial variation and hyoid anatomy. Principal components analysis revealed multiple orthogonal dimensions of cranio-facial variation, some of which were associated with significant differences in larynx position: the larynx occupied a more descended position in individuals with shorter, broader faces than in those with longer, narrower faces. We then tested the possibility that caudal displacement of the larynx in brachycephalic individuals might reflect a degree of tongue crowding resulting from facial shortening and reduction of oral and pharyngeal spaces. A cadaver sample was used to obtain detailed measurements of constituent bones of the hyoid skeleton and of the tongue body, and their relationships to cranio-facial size and shape and overall body size supported the tongue-crowding hypothesis. Considering the presence of descended larynges in numerous mammalian taxa, our findings establish an important precedent for the possibility that laryngeal descent can be initiated, and even sustained, in part in response to remodeling of the face and cranium for selective pressures unrelated to vocal production. These integrated changes could also have been involved in hominin evolution, where the different laryngeal positions in modern humans compared with nonhuman primates have been traditionally linked to the evolution of speech but which are likely to be multifactorial.
Collapse
Affiliation(s)
- Kyle Plotsky
- Behaviour and Evolution Research Group, Department of Psychology, The University of Lethbridge, Lethbridge, AB, Canada
| | - Drew Rendall
- Behaviour and Evolution Research Group, Department of Psychology, The University of Lethbridge, Lethbridge, AB, Canada.,Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Kevin Chase
- Department of Biology, The University of Utah, Salt Lake City, UT, USA
| | - Tobias Riede
- Department of Physiology, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
13
|
Frey R, Volodin IA, Fritsch G, Volodina EV. Potential Sources of High Frequency and Biphonic Vocalization in the Dhole (Cuon alpinus). PLoS One 2016; 11:e0146330. [PMID: 26730952 PMCID: PMC4701476 DOI: 10.1371/journal.pone.0146330] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/16/2015] [Indexed: 11/19/2022] Open
Abstract
Biphonation, i.e. two independent fundamental frequencies in a call spectrum, is a prominent feature of vocal activity in dog-like canids. Dog-like canids can produce a low (f0) and a high (g0) fundamental frequency simultaneously. In contrast, fox-like canids are only capable of producing the low fundamental frequency (f0). Using a comparative anatomical approach for revealing macroscopic structures potentially responsible for canid biphonation, we investigated the vocal anatomy for 4 (1 male, 3 female) captive dholes (Cuon alpinus) and for 2 (1 male, 1 female) wild red fox (Vulpes vulpes). In addition, we analyzed the acoustic structure of vocalizations in the same dholes that served postmortem as specimens for the anatomical investigation. All study dholes produced both high-frequency and biphonic calls. The anatomical reconstructions revealed that the vocal morphologies of the dhole are very similar to those of the red fox. These results suggest that the high-frequency and biphonic calls in dog-like canids can be produced without specific anatomical adaptations of the sound-producing structures. We discuss possible production modes for the high-frequency and biphonic calls involving laryngeal and nasal structures.
Collapse
Affiliation(s)
- Roland Frey
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Ilya A. Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Scientific Research Department, Moscow Zoo, Moscow, Russia
| | - Guido Fritsch
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | | |
Collapse
|
14
|
Vocal Production by Terrestrial Mammals: Source, Filter, and Function. VERTEBRATE SOUND PRODUCTION AND ACOUSTIC COMMUNICATION 2016. [DOI: 10.1007/978-3-319-27721-9_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Pisanski K, Fraccaro PJ, Tigue CC, O'Connor JJ, Röder S, Andrews PW, Fink B, DeBruine LM, Jones BC, Feinberg DR. Vocal indicators of body size in men and women: a meta-analysis. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.06.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|