1
|
Ferreira CM, Dammhahn M, Eccard JA. So many choices, so little time: Food preference and movement vary with the landscape of fear. Ecol Evol 2023; 13:e10330. [PMID: 37520778 PMCID: PMC10372006 DOI: 10.1002/ece3.10330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Spatial and temporal variation in perceived predation risk is an important determinant of movement and foraging activity of animals. Foraging in this landscape of fear, individuals need to decide where and when to move, and what resources to choose. Foraging theory predicts the outcome of these decisions based on energetic trade-offs, but complex interactions between perceived predation risk and preferences of foragers for certain functional traits of their resources are rarely considered. Here, we studied the interactive effects of perceived predation risk on food trait preferences and foraging behavior in bank voles (Myodes glareolus) in experimental landscapes. Individuals (n = 19) were subjected for periods of 24 h to two extreme, risk-uniform landscapes (either risky or safe), containing 25 discrete food patches, filled with seeds of four plant species in even amounts. Seeds varied in functional traits: size, nutrients, and shape. We evaluated whether and how risk modifies forager preference for functional traits. We also investigated whether perceived risk and distance from shelter affected giving-up density (GUD), time in patches, and number of patch visits. In safe landscapes, individuals increased time spent in patches, lowered GUD and visited distant patches more often compared to risky landscapes. Individuals preferred bigger seeds independent of risk, but in the safe treatment they preferred fat-rich over carb-rich seeds. Thus, higher densities of resource levels remained in risky landscapes, while in safe landscapes resource density was lower and less diverse due to selective foraging. Our results suggest that the interaction of perceived risk and dietary preference adds an additional layer to the cascading effects of a landscape of fear which affects biodiversity at resource level.
Collapse
Affiliation(s)
- Clara Mendes Ferreira
- Animal Ecology, Institute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Melanie Dammhahn
- Behavioural Biology, Institute for Neuro‐ and Behavioural BiologyUniversity of MünsterMünsterGermany
| | - Jana A. Eccard
- Animal Ecology, Institute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| |
Collapse
|
2
|
Harrison ND, Steven R, Phillips BL, Hemmi JM, Wayne AF, Mitchell NJ. Identifying the most effective behavioural assays and predator cues for quantifying anti-predator responses in mammals: a systematic review. ENVIRONMENTAL EVIDENCE 2023; 12:5. [PMID: 39294799 PMCID: PMC11378833 DOI: 10.1186/s13750-023-00299-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/12/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Mammals, globally, are facing population declines. Protecting and breeding threatened populations inside predator-free havens and translocating them back to the wild is commonly viewed as a solution. These approaches can expose predator-naïve animals to predators they have never encountered and as a result, many conservation projects have failed due to the predation of individuals that lacked appropriate anti-predator responses. Hence, robust ways to measure anti-predator responses are urgently needed to help identify naïve populations at risk, to select appropriate animals for translocation, and to monitor managed populations for changes in anti-predator traits. Here, we undertake a systematic review that collates existing behavioural assays of anti-predator responses and identifies assay types and predator cues that provoke the greatest behavioural responses. METHODS We retrieved articles from academic bibliographic databases and grey literature sources (such as government and conservation management reports), using a Boolean search string. Each article was screened against eligibility criteria determined using the PICO (Population-Intervention-Comparator-Outcome) framework. Using data extracted from each article, we mapped all known behavioural assays for quantifying anti-predator responses in mammals and examined the context in which each assay has been implemented (e.g., species tested, predator cue characteristics). Finally, with mixed effects modelling, we determined which of these assays and predator cue types elicit the greatest behavioural responses based on standardised difference in response between treatment and control groups. REVIEW FINDINGS We reviewed 5168 articles, 211 of which were eligible, constituting 1016 studies on 126 mammal species, a quarter of which are threatened by invasive species. We identified six major types of behavioural assays: behavioural focals, capture probability, feeding station, flight initiation distance, giving-up density, and stimulus presentations. Across studies, there were five primary behaviours measured: activity, escape, exploration, foraging, and vigilance. These behaviours yielded similar effect sizes across studies. With regard to study design, however, studies that used natural olfactory cues tended to report larger effect sizes than those that used artificial cues. Effect sizes were larger in studies that analysed sexes individually, rather than combining males and females. Studies that used 'blank' control treatments (the absence of a stimulus) rather than a treatment with a control stimulus had higher effect sizes. Although many studies involved repeat measures of known individuals, only 15.4% of these used their data to calculate measures of individual repeatability. CONCLUSIONS Our review highlights important aspects of experimental design and reporting that should be considered. Where possible, studies of anti-predator behaviour should use appropriate control treatments, analyse males and females separately, and choose organic predator cues. Studies should also look to report the individual repeatability of behavioural traits, and to correctly identify measures of uncertainty (error bars). The review highlights robust methodology, reveals promising techniques on which to focus future assay development, and collates relevant information for conservation managers.
Collapse
Affiliation(s)
- Natasha D Harrison
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
| | - Rochelle Steven
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Environmental and Conservation Sciences, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Ben L Phillips
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jan M Hemmi
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- The UWA Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia
| | - Adrian F Wayne
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Manjimup, WA, 6258, Australia
| | - Nicola J Mitchell
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
3
|
Using activity densities as an alternative approach to measuring ungulate giving-up densities in the presence of non-target species. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-022-03283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Zylinski S, Swan M, Sitters H. Contrasting responses of native and introduced mammal communities to fire mosaics in a modified landscape. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2570. [PMID: 35167168 DOI: 10.1002/eap.2570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Planned fire is increasingly recognized as an important tool in conservation, but other factors such as land-use change may hinder the ability of land managers to use fire for the benefit of biodiversity. The mosaic of past fires in native vegetation may interact with the mosaic of other land-cover types in human-modified landscapes, yet the effects of these interactions on mammal communities are unknown. We investigated the responses of ground-dwelling mammal community composition and species richness to interactions between land cover and post-fire vegetation growth-stage mosaics in southern Australia. This fire-prone, human-modified landscape features a fine-scale fire mosaic in native vegetation patches surrounded by pasture, horticulture, and peri-urban environments. We measured the composition of land-cover types and fire mosaics (landscape structure) at multiple scales of up to 1257 ha surrounding 129 study sites, and considered native and introduced species together and separately. Land-cover composition was the primary driver of community composition: native species favored areas with a greater proportion of native heathy woodland, whereas introduced species were associated with landscapes comprising more cleared land. The fire mosaic also influenced community composition and species richness: greater growth-stage diversity was associated with native habitat-specialist communities and fewer introduced species. In areas with more cleared land, native species richness increased when there was a greater proportion of mid-successional vegetation, demonstrating that the effect of fire mosaics on mammal diversity depended on land-cover composition. The positive relationship between introduced species richness and cleared land extent was also stronger in recently burned sites than in other growth stages, suggesting that introduced species are well suited to more modified areas of the landscape. Land managers need to consider the underlying land-cover composition and the potential interactions it may have with fire mosaics and species composition. In this landscape a greater diversity of growth stages may disadvantage introduced species yet an increase in mid-successional vegetation in more modified areas would be likely to benefit native mammal communities. Our study highlights that fire management may need to be tailored depending on the context of land use and the species of interest.
Collapse
Affiliation(s)
- Simeon Zylinski
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria, Australia
| | - Matthew Swan
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria, Australia
| | - Holly Sitters
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria, Australia
| |
Collapse
|
5
|
Bragato PJ, Spencer EE, Dickman CR, Crowther MS, Tulloch A, Newsome TM. Effects of habitat, season and flood on corvid scavenging dynamics in Central Australia. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Patrick J. Bragato
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Emma E. Spencer
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Chris R. Dickman
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Mathew S. Crowther
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Ayesha Tulloch
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Thomas M. Newsome
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
6
|
Fardell LL, Nano CEM, Pavey CR, Dickman CR. Small Prey Animal Foraging Behaviors in Landscapes of Fear: Effects of Predator Presence and Human Activity Along an Urban Disturbance Gradient. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.805891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Urban environments provide the only or best habitats that are left for wildlife in many areas, promoting increased interest in urban conservation and a need to understand how wildlife cope with urban stressors, such as altered predator activity and human disturbance. Here, we used filmed giving-up density experiments to investigate behavioral coping responses of foraging small prey animals at three sites (close, mid, and far) along an urban disturbance gradient. Our study design included “natural” and experimentally added stressor cues of predators and/or human disturbance. We observed small mammal foraging behaviors, particularly: the common brushtail possum (Trichosurus vulpecula), northern brown bandicoot (Isoodon macrourus), brown antechinus (Antechinus stuartii), black rat (Rattus rattus), and brown rat (Rattus norvegicus), and to a lesser degree several species of native birds. We found that at the close urban-edge environment, coping responses to human disturbances were most pronounced, and predator cues from the red fox (Vulpes vulpes) were perceived as least risky. However, at the mid environment, red fox cues were perceived as most risky, especially when combined with human disturbance. At the far environment, domestic cat (Felis catus) cues were perceived as most risky, again when combined with human disturbance. Impacts from the combined stressors of predator and human disturbance cues appeared to be additive, with higher risk being perceived with increasing distance from urban build-up. Behavioral adjustments were observed to be the primary response to stressors by small prey animals in the close environment. In the mid environment, slight temporal shifts in activity across the night were more evident. In the far environment, habitat components were likely being used differently as the primary coping response to stressors. As mostly the same species were observed along the disturbance gradient, our results suggest a level of response plasticity that is calibrated to the level of exposure to a stressor and the stressor type. To maximize conservation outcomes in urban habitats, we therefore propose that management should be sensitive to the level and history of human disturbance, as this affects the coping responses of wildlife that remain.
Collapse
|
7
|
Webb EB, McArthur C, Woolfenden L, Higgins DP, Krockenberger MB, Mella VSA. Risk of predation and disease transmission at artificial water stations. WILDLIFE RESEARCH 2022. [DOI: 10.1071/wr21044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Herath APHM, Wat KKY, Banks PB, McArthur C. Animal personality drives individual dietary specialisation across multiple dimensions in a mammalian herbivore. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Katie K. Y. Wat
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| | - Peter B. Banks
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| | - Clare McArthur
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| |
Collapse
|
9
|
Let's get wild: A review of free-ranging rat assays as context-enriched supplements to traditional laboratory models. J Neurosci Methods 2021; 362:109303. [PMID: 34352335 DOI: 10.1016/j.jneumeth.2021.109303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 01/30/2023]
Abstract
More than 24,000 rodent studies are published annually, with the vast majority of these studies focused on genetically undiverse animals in highly-controlled laboratory settings. However, findings from the laboratory have become increasingly unreliable for predicting outcomes in field and clinical settings, leading to a perceived crisis in translational research. One cause of this disparity might be that most human societies, in contrast to laboratory rodents, are genetically diverse and live in super-enriched environments. Methods for importing wild rats into the laboratory, and also exporting laboratory-style chambers into natural environments are not well-known outside their respective disciplines. Therefore, we have reviewed the current status of supplements to the laboratory rodent assay. We progress logically from highly-controlled experiments with natural breeding colonies to purely naturalistic approaches with free-ranging rats. We then highlight a number of approaches that allow genetically-diverse wild rats to be utilized in context-enriched paradigms. While considering the benefits and shortcomings of each available approach, we detail protocols for random sampling, remote-sensing, and deployment of laboratory chambers in the field. As supplements to standardized laboratory trials, some of these assays could offer key insights to help unify outcomes between laboratory and field studies. However, we note several outstanding questions that must be addressed such as: the trade-off between control and context, possible reductions in sample size, ramifications for the 'standardization fallacy', and ethical dilemmas of working with wild animals. Given these challenges, further innovation will be required before supplemental assays can be made broadly-accessible and thus, transferrable across disciplines.
Collapse
|
10
|
Denny KN, Bilodeau KN, Dumont CA, Olson ZH. Separating effects of spatial location and microhabitat density on perceived predation risk in small mammals. Acta Ethol 2021. [DOI: 10.1007/s10211-021-00365-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Edwards MC, Hoy JM, FitzGibbon SI, Murray PJ. Relaxed predation theory: size, sex and brains matter. Biol Rev Camb Philos Soc 2020; 96:153-161. [PMID: 32441454 DOI: 10.1111/brv.12611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 01/23/2023]
Abstract
Australia's wildlife is being considerably impacted by introduced mammalian predators such as cats (Felis catus), dogs (Canis lupus familiaris), and foxes (Vulpes vulpes). This is often attributed to native wildlife being naïve to these introduced predators. A systematic review of the literature reveals that native metatherians (body mass range 0.02-25 kg) do not recognise, and show relaxed antipredator behaviours towards, native and some introduced mammalian predators. Native eutherians (all with body mass < 2 kg), however, do appear to recognise and exhibit antipredator behaviours towards both native and introduced predators. Based on our findings, we propose a novel theory, the 'Relaxed Predation Theory'. Our new theory is based on the absence of large mammalian predators leading to reduced predation pressure in Australia during the past 40000-50000 years, and on three key differences between Australian metatherians and eutherians: size, sex, and brains. In light of this Relaxed Predation Theory, we make a number of recommendations for the conservation of Australian wildlife: (i) predator avoidance training of suitable species; (ii) exclusion fencing to exclude some, but not all, predators to facilitate the development of antipredator behaviours; (iii) captive breeding programs to prevent the extinction of some species; and (iv) reintroduction of Australia's larger predators, potentially to compete with and displace introduced predators. A more detailed understanding of the responses of Australian mammals to predators will hopefully contribute to the improved conservation of susceptible species.
Collapse
Affiliation(s)
- Megan C Edwards
- School of Agriculture and Food Sciences, The University of Queensland, Gatton Campus, 4343, Queensland, Australia.,Hidden Vale Wildlife Centre, The University of Queensland, 617 Grandchester Mount-Mort Road, Grandchester, 4340, Queensland, Australia
| | - Julia M Hoy
- Hidden Vale Wildlife Centre, The University of Queensland, 617 Grandchester Mount-Mort Road, Grandchester, 4340, Queensland, Australia
| | - Sean I FitzGibbon
- School of Agriculture and Food Sciences, The University of Queensland, Gatton Campus, 4343, Queensland, Australia
| | - Peter J Murray
- School of Agriculture and Food Sciences, The University of Queensland, Gatton Campus, 4343, Queensland, Australia
| |
Collapse
|
12
|
Rus AI, McArthur C, Mella VSA, Crowther MS. Habitat fragmentation affects movement and space use of a specialist folivore, the koala. Anim Conserv 2020. [DOI: 10.1111/acv.12596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. I. Rus
- School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
| | - C. McArthur
- School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
| | - V. S. A. Mella
- School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
| | - M. S. Crowther
- School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
13
|
Carreira DC, Brodie JF, Mendes CP, Ferraz KMPMB, Galetti M. A question of size and fear: competition and predation risk perception among frugivores and predators. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Mammalian spatial and temporal activity patterns can vary depending on foraging behavior or the perception of predation or competition risk among species. These behaviors may in turn be altered by human influences such as defaunation. Herein, we evaluate whether frugivores avoid areas with high visitation rates by potential predators or competitors, and whether this avoidance changes in areas with different degrees of defaunation. We installed 189 cameras under fruit trees in six areas of the Atlantic Forest, Brazil, that differ in the abundance of top predators and large frugivores. Small predators and small frugivores were more frequent at night while large frugivores were more frequent during the day, but small frugivores visited and spent less time at fruiting trees on brighter nights, unlike large predators and large frugivores. Small frugivores also were less frequent in areas with high visitation by large frugivores and more frequent in highly defaunated areas. Our results suggest that the dynamics among mammalian functional groups varied according to diel patterns, potential competitors, and defaunation. We highlight the importance of understanding how species interactions are changing in areas exposed to strong human impacts to mitigate the indirect effects of defaunation.
Collapse
Affiliation(s)
- Daiane Cristina Carreira
- Programa Interunidades de Pós Graduação em Ecologia Aplicada, Escola Superior de Agricultura “Luiz de Queiroz” - Universidade de São Paulo, Piracicaba, São Paulo, Brazil
- Fundação Hermínio Ometto - Uniararas, Araras, São Paulo, Brazil
| | - Jedediah F Brodie
- Division of Biological Sciences and Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Calebe P Mendes
- Instituto de Biociências, Departamento de Ecologia, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | - Katia Maria P M B Ferraz
- Departamento de Ciências Florestais, ESALQ, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Mauro Galetti
- Instituto de Biociências, Departamento de Ecologia, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
- Department of Biology, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
14
|
Fardell LL, Pavey CR, Dickman CR. Fear and stressing in predator-prey ecology: considering the twin stressors of predators and people on mammals. PeerJ 2020; 8:e9104. [PMID: 32391213 PMCID: PMC7196326 DOI: 10.7717/peerj.9104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
Predators induce stress in prey and can have beneficial effects in ecosystems, but can also have negative effects on biodiversity if they are overabundant or have been introduced. The growth of human populations is, at the same time, causing degradation of natural habitats and increasing interaction rates of humans with wildlife, such that conservation management routinely considers the effects of human disturbance as tantamount to or surpassing those of predators. The need to simultaneously manage both of these threats is particularly acute in urban areas that are, increasingly, being recognized as global hotspots of wildlife activity. Pressures from altered predator-prey interactions and human activity may each initiate fear responses in prey species above those that are triggered by natural stressors in ecosystems. If fear responses are experienced by prey at elevated levels, on top of responses to multiple environmental stressors, chronic stress impacts may occur. Despite common knowledge of the negative effects of stress, however, it is rare that stress management is considered in conservation, except in intensive ex situ situations such as in captive breeding facilities or zoos. We propose that mitigation of stress impacts on wildlife is crucial for preserving biodiversity, especially as the value of habitats within urban areas increases. As such, we highlight the need for future studies to consider fear and stress in predator-prey ecology to preserve both biodiversity and ecosystem functioning, especially in areas where human disturbance occurs. We suggest, in particular, that non-invasive in situ investigations of endocrinology and ethology be partnered in conservation planning with surveys of habitat resources to incorporate and reduce the effects of fear and stress on wildlife.
Collapse
Affiliation(s)
- Loren L. Fardell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
15
|
Zaguri M, Hawlena D. Odours of non‐predatory species help prey moderate their risk assessment. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Moshe Zaguri
- Risk‐Management Ecology Lab Department of Ecology, Evolution & Behavior The Alexander Silberman Institute of Life Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Dror Hawlena
- Risk‐Management Ecology Lab Department of Ecology, Evolution & Behavior The Alexander Silberman Institute of Life Sciences The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
16
|
Wat KK, Banks PB, McArthur C. Linking animal personality to problem-solving performance in urban common brushtail possums. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
van Ginkel HAL, Smit C, Kuijper DPJ. Behavioral response of naïve and non-naïve deer to wolf urine. PLoS One 2019; 14:e0223248. [PMID: 31774819 PMCID: PMC6880981 DOI: 10.1371/journal.pone.0223248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
Large carnivores are recolonizing many regions in Europe, where their ungulate prey have lived without them for >150 years. Whether the returning large carnivores will modify ungulate behavior and indirectly affect lower trophic levels, depends on the ability of ungulates to recognize risk based on past encounters and cues indicating carnivore presence. In two case studies, we tested, by means of camera trapping, the behavioral response of deer to wolf urine. The first case study was in the Netherlands where deer (still) live in absence of wolves, and the second in Poland with long-term wolf presence. As controls we used water (no scent) and all-purpose soap (unfamiliar scent). Deer vigilance level on control plots was 20% in both case studies indicating that wolf occupancy per se does not lead to a consistent difference in behavior. Placing wolf urine did not significantly affect deer behavior in either the wolf-absent or the wolf-present area. More intense cues, or a combination of cues, are likely needed to affect deer behavior. Moreover, we found an unexpected reaction of deer towards all-purpose soap of reduced foraging (and tendency for increased vigilance) in the wolf-present area, whereas it did not affect deer behavior in the wolf-absent area. We hypothesize that deer associate all-purpose soap with human presence, causing no response in human-dominated landscapes (the Netherlands), but triggering a behavioral reaction in more remote areas (Poland). This illustrates attention should be paid to controls used in scent experiments as they may be associated differently than intended.
Collapse
Affiliation(s)
- Hermine Annette Lisa van Ginkel
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Christian Smit
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
18
|
Wat KKY, Herath APHM, Rus AI, Banks PB, Mcarthur C. Space use by animals on the urban fringe: interactive effects of sex and personality. Behav Ecol 2019. [DOI: 10.1093/beheco/arz194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Personality traits shape individual perceptions of risks and rewards, and so, should affect how animals value and use their environment. Evidence is emerging that personality affects foraging, space use, and exploitation of novel environments such as urban habitat. But the influence of personality is also hypothesized to be sex-dependent when primary motivation for space use differs between sexes, as often occurs in polygynous species. We tested the influence of personality traits, interacting with sex, on space use by the polygynous common brushtail possum, Trichosurus vulpecula, in an urban-woodland boundary in Sydney, Australia. We quantified personality traits, including exploration, using behavioral assays in an artificial arena. We also GPS-tracked free-ranging individuals, and measured range size, core area: home range, and proportional urban range. We found that personality traits affected space use either as a main effect or, as predicted, an interaction with sex. More exploratory animals, regardless of sex, had higher core area: home range ratios and proportionally larger ranges within urban habitat. However, less exploratory females yet more exploratory males had larger ranges. Our findings provide new insight into movement ecology by demonstrating, for the first time, the sex-dependent influence of personality. The demonstrated influence of personality on urban use by possums also suggests a personality filter for wildlife, as populations transition into urban areas. Finally, as individuals at the interface between urban and natural habitat are also a conduit between the two, a corollary of our findings is that there may be personality-mediated spread of disease across this boundary.
Collapse
Affiliation(s)
- Katie K Y Wat
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Anushika P H M Herath
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Adrian I Rus
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Peter B Banks
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Clare Mcarthur
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| |
Collapse
|
19
|
Zaguri M, Hawlena D. Bearding the scorpion in his den: desert isopods take risks to validate their ‘landscape of fear’ assessment. OIKOS 2019. [DOI: 10.1111/oik.06477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Moshe Zaguri
- Risk‐Management Ecology Lab, Dept of Ecology, Evolution and Behavior, The Alexander Silberman Inst. of Life Sciences, The Hebrew Univ. of Jerusalem, Edmond J. Safra Campus at Givat Ram IL‐91904 Jerusalem Israel
| | - Dror Hawlena
- Risk‐Management Ecology Lab, Dept of Ecology, Evolution and Behavior, The Alexander Silberman Inst. of Life Sciences, The Hebrew Univ. of Jerusalem, Edmond J. Safra Campus at Givat Ram IL‐91904 Jerusalem Israel
| |
Collapse
|
20
|
Mella VSA, Possell M, Troxell-Smith SM, McArthur C. Visit, consume and quit: Patch quality affects the three stages of foraging. J Anim Ecol 2018; 87:1615-1626. [PMID: 29995984 DOI: 10.1111/1365-2656.12882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 02/01/2023]
Abstract
Foraging is a three-stage process during which animals visit patches, consume food and quit. Foraging theory exploring relative patch quality has mostly focused on patch use and quitting decisions, ignoring the first crucial step for any forager: finding food. Yet, the decision to visit a patch is just as important as the decision to quit, as quitting theories can only be used if animals visit patches in the first place. Therefore, to better understand the foraging process and predict its outcomes, it is necessary to explore its three stages together. We used the common brushtail possum (Trichosurus vulpecula) as a model to investigate foraging decisions in response to food varying in quality. In particular, we tested whether patch nutritional quality affected the following: (1) patch visits; (2) behaviours at the patch during a foraging visit; and (3) patch quitting decisions (quantified using giving up density-GUD). Free-ranging possums were presented with diets varying in nitrogen content and concomitantly volatile organic compound (VOC) composition at feeding stations in the wild. We found that possums were able to distinguish between different quality foods from afar, despite the location of the diets changed daily. Possums used VOC (i.e. odour cues) emitted by the diets to find and select patches from a distance. High-quality diets with higher protein and lower fibre were visited more often and for longer. Possums spent more time foraging on diets high in nutritional content, resulting in lower GUDs. Our study provides important quantitative evidence that foraging efficiency plays out during all the three stages of the foraging process (i.e. visit, consume and quit), and demonstrates the significance of considering all these stages together in future studies and foraging models. Sensory cues such as food odours play a critical role in helping foragers, including mammalian herbivores, find high-quality food. This allows foragers to make quick, accurate and important decisions about food patches well before patch quitting decisions come into play.
Collapse
Affiliation(s)
- Valentina S A Mella
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Malcolm Possell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Sandra M Troxell-Smith
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois.,Department of Biological Sciences, Oakland University, Rochester, Minnesota
| | - Clare McArthur
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Esparza-Carlos JP, Íñiguez-Dávalos LI, Laundré J. Microhabitat and presence of top predators affect prey apprehension in a subtropical mountain forest. J Mammal 2018. [DOI: 10.1093/jmammal/gyy046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Juan Pablo Esparza-Carlos
- Universidad de Guadalajara, Centro Universitario de la Costa Sur, Independencia Nacional, Autlán de Navarro, Jalisco, México
| | - Luis Ignacio Íñiguez-Dávalos
- Universidad de Guadalajara, Centro Universitario de la Costa Sur, Independencia Nacional, Autlán de Navarro, Jalisco, México
| | | |
Collapse
|
22
|
Bannister H, Brandle R, Moseby K. Antipredator behaviour of a native marsupial is relaxed when mammalian predators are excluded. WILDLIFE RESEARCH 2018. [DOI: 10.1071/wr18060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Context
Predator-controlled environments can lead to prey species losing costly antipredator behaviours as they exploit their low-risk environment, creating a ‘predator-naïve’ population. If individuals lacking suitable antipredator behaviours are used as source populations for reintroductions to environments where predators are present, their behaviour could result in high post-release predation. In contrast, animals sourced from environments with predators (‘predator-exposed’) may show effective antipredator behaviours and thus higher survival post-release.
Aims
The aim was to compare the antipredator behaviour of brushtail possums (Trichosurus vulpecula) at predator-exposed and predator-naïve source populations, and then compare post-release survival after their reintroduction to a low predator environment.
Methods
Data were collected from possums at two sites, one with and one without mammalian predators. The behavioural responses of possums to a spotlighter, their willingness to use supplementary feeders at ‘safe’ and ‘risky’ heights, whether they avoided predator odour at traps and their general willingness to enter traps were recorded.
Key results
Predator-naïve possums showed weaker antipredator responses, were often found at ground level, engaged with novel objects, did not avoid predator scents and utilised different habitats regardless of associated predation risk. In contrast, predator-exposed possums had higher antipredator responses, chose connected trees, were rarely found at ground level and were generally difficult to capture. Post-translocation survival was high for both source populations. Predator-naïve-sourced female possums began to avoid predator urine (feral cat; Felis catus) 12 months after translocation.
Conclusions
Our research demonstrates that environmental predation risk can predict prey naïvety in brushtail possums. Some aspects of prey naïvety behaviour appear to be able to change in response to altered predation risk.
Implications
With many threatened species now existing only in feral predator-free areas, these results have implications for future reintroductions into unbounded areas where feral predators are present, and for the management of fenced reserves. The addition of a small number of predators to fenced reserves may aid in retaining antipredator behaviours in fenced prey populations.
Collapse
|
23
|
Bleicher SS. The landscape of fear conceptual framework: definition and review of current applications and misuses. PeerJ 2017; 5:e3772. [PMID: 28929015 PMCID: PMC5600181 DOI: 10.7717/peerj.3772] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/16/2017] [Indexed: 11/24/2022] Open
Abstract
Landscapes of Fear (LOF), the spatially explicit distribution of perceived predation risk as seen by a population, is increasingly cited in ecological literature and has become a frequently used "buzz-word". With the increase in popularity, it became necessary to clarify the definition for the term, suggest boundaries and propose a common framework for its use. The LOF, as a progeny of the "ecology of fear" conceptual framework, defines fear as the strategic manifestation of the cost-benefit analysis of food and safety tradeoffs. In addition to direct predation risk, the LOF is affected by individuals' energetic-state, inter- and intra-specific competition and is constrained by the evolutionary history of each species. Herein, based on current applications of the LOF conceptual framework, I suggest the future research in this framework will be directed towards: (1) finding applied management uses as a trait defining a population's habitat-use and habitat-suitability; (2) studying multi-dimensional distribution of risk-assessment through time and space; (3) studying variability between individuals within a population; (4) measuring eco-neurological implications of risk as a feature of environmental heterogeneity and (5) expanding temporal and spatial scales of empirical studies.
Collapse
Affiliation(s)
- Sonny S. Bleicher
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States of America
- Tumamoc People and Habitat, Tumamoc Desert Research Laboratory, University of Arizona, United States of America
| |
Collapse
|
24
|
|
25
|
|
26
|
The effects of the diel cycle and the density of an invasive predator on predation risk and prey response. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Mella VSA, Krucler J, Sunderasan L, Hawkins J, Herath APHM, Johnstone KC, Troxell-Smith SM, Banks PB, McArthur C. Effective field-based methods to quantify personality in brushtail possums (Trichosurus vulpecula). WILDLIFE RESEARCH 2016. [DOI: 10.1071/wr15216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
There is growing recognition of the importance of animal personality in wildlife ecology and management. Individuals that differ consistently in their behaviours from others of the same population are considered to exhibit different personalities. Personality can be easily quantified with repeat tests on animals held in captivity. However, captive-based tests may not always be possible for logistical reasons and tests conducted in captivity can alter naturally occurring behaviours. Development of methods to assess personality in the field over short-term capture is an important alternative to long-term captive tests.
Aims
To develop and refine field-based tests that can be used to easily define personality traits of wild common brushtail possum (Trichosurus vulpecula), eliminating the need to bring individuals into captivity for an extended period of time.
Methods
We developed a series of short-term capture protocols to quantify personality traits of the common brushtail possum in the field, using handling-bag tests, modified open-field tests, trap-behaviour tests and release tests.
Key results
Personality traits of brushtail possums could be measured in several different ways, but refining methods was crucial to reveal traits efficiently. Behaviours related to several personality traits (boldness, docility and activity/exploration) could be measured rapidly in the field with our methods, and were repeatable over time.
Conclusions
Rapid, reliable and easy-to-perform quantification of personality of brushtail possums in the field is possible. This may sometimes be the only available option, and has advantages over long captive trials in terms of animal welfare and cost.
Implications
The present study provides a baseline for future research on the personality of common brushtail possums and its application to management and control strategies for the species.
Collapse
|
28
|
Cremona T, Mella VSA, Webb JK, Crowther MS. Do individual differences in behavior influence wild rodents more than predation risk? J Mammal 2015. [DOI: 10.1093/jmammal/gyv142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Apfelbach R, Parsons MH, Soini HA, Novotny MV. Are single odorous components of a predator sufficient to elicit defensive behaviors in prey species? Front Neurosci 2015; 9:263. [PMID: 26283903 PMCID: PMC4518157 DOI: 10.3389/fnins.2015.00263] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/13/2015] [Indexed: 11/28/2022] Open
Abstract
When exposed to the odor of a sympatric predator, prey animals typically display escape or defensive responses. These phenomena have been well-documented, especially in rodents, when exposed to the odor of a cat, ferret, or fox. As a result of these experiments new discussions center on the following questions: (1) is a single volatile compound such as a major or a minor mixture constituent in urine or feces, emitted by the predator sufficient to cause defensive reactions in a potential prey species or (2) is a whole array of odors required to elicit a response and (3) will the relative size or escapability of the prey as compared to the predator influence responsiveness. Most predator-prey studies on this topic have been performed in the laboratory or under semi-natural conditions. Field studies could help to find answers to these questions. Australian mammals are completely naïve toward the introduced placental carnivores. That offers ideal opportunities to analyze in the field the responses of potential prey species to unknown predator odors. During the last decades researchers have accumulated an enormous amount of data exploring the effects of eutherian predator odors on native marsupial mammals. In this review, we will give a survey about the development of olfactory research, chemical signals and their influence on the behavior and-in some cases-physiology of prey species. In addition, we report on the effects of predator odor experiments performed under natural conditions in Australia. When studying all these literature we learned that data gained under controlled laboratory conditions elucidate the role of individual odors on brain structures and ultimately on a comparatively narrow range behaviors. In contrast to single odors odor arrays mimic much more the situation prey animals are confronted to in nature. Therefore, a broad range of methodology-from chemistry to ecology including anatomy, physiology, and behavior-is needed to understand all the different (relevant) stimuli that govern and guide the interactions between a predator and its potential prey.
Collapse
Affiliation(s)
- Raimund Apfelbach
- Animal Physiology, Institute for Neurobiology, University of TübingenTübingen, Germany
| | | | - Helena A. Soini
- Department of Chemistry, Institute for Pheromone Research, Indiana UniversityBloomington, IN, USA
| | - Milos V. Novotny
- Department of Chemistry, Institute for Pheromone Research, Indiana UniversityBloomington, IN, USA
| |
Collapse
|
30
|
Mella VSA, Ward AJW, Banks PB, McArthur C. Personality affects the foraging response of a mammalian herbivore to the dual costs of food and fear. Oecologia 2014; 177:293-303. [PMID: 25294220 DOI: 10.1007/s00442-014-3110-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 09/04/2014] [Indexed: 12/16/2022]
Abstract
Predators attack and plants defend, so herbivores face the dilemma of how to eat enough without being eaten. But do differences in the personality of herbivores affect the foraging choices of individuals? We explored the ecological impact of personality in a generalist herbivore, the brushtail possum (Trichosurus vulpecula). After quantifying personality traits in wild individuals brought temporarily into captivity, we tested how these traits altered foraging by individuals when free-ranging in their natural habitat. To measure their responses to the dual costs of predation risk and plant toxin, we varied the toxin concentration of food in safe foraging patches against paired, non-toxic risky patches, and used a novel synthesis of a manipulative Giving-Up-Density (GUD) experiment and video behavioural analysis. At the population level, the cost of safe patches pivoted around that of risky patches depending on food toxin concentration. At the individual level, boldness affected foraging at risky high-quality food patches (as behavioural differences between bold and shy), and at safe patches only when food toxin concentration was low (as differences in foraging outcome). Our results ecologically validate the personality trait of boldness, in brushtail possums. They also reveal, for the first time, a nuanced link between personality and the way in which individuals balance the costs of food and fear. Importantly, they suggest that high plant defence effectively attenuates differences in foraging behaviour arising from variation in personality, but poorly defended plants in safe areas should be differentially subject to herbivory depending on the personality of the herbivore.
Collapse
Affiliation(s)
- Valentina S A Mella
- School of Biological Sciences, The University of Sydney, Sydney, NSW, 2006, Australia,
| | | | | | | |
Collapse
|